

 Atari* System Reference manual

 (c) 1987 By Bob DuHamel

 Bob Duhamel
 6915 Casselberry Way
 San Diego, CA 92119

 *Atari is a registered trademark of Atari Corp.

 This manual contains highly technical information. Such information
 is provided for those who know how to use it. To understand the
 advanced information you are expected to know 6502 assembly language.
 If you are new to programming, concentrate on the parts which discuss
 BASIC commands.

 Addresses are usually given in both hexadecimal and decimal numbers.
 The operating system equate names are given in capital letters with
 the address following in brackets. The decimal address is in
 parenthsis within the brackets. For example:

 DOSVEC [$000A,2 (10)]

 name hex dec

 The ",2" after the hexadecimal number means that this address requires
 two bytes to hold its' information. Any address called a "vector"
 uses two bytes whether noted or not.

 Control registers and some other bytes of memory are shown in the
 following format

 Register format

 7 6 5 4 3 2 1 0

 | |

 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 The numbers on top are the bit numbers. Bit 7 is the Most Significant
 Bit (MSB) and bit 0 is the Least Significant bit (LSB). The numbers
 on the bottom are the bit weights. These are useful when changing
 memory with decimal numbers, as you would in BASIC. For example, to
 set bit 4 of a register to 1, without changing any other bits you
 would add 16 to the decimal number already in the register. To reset
 the same bit to 0, you would subtract 16 from the number in the

 register. This is exactly what the command GRAPHICS 8+16 does. It
 sets bits 3 and 4 of a graphics mode control register.

 MSB and LSB may also mean Most Significant Byte or Least Significant
 Byte, depending on context.

 CONTENTS

 1 THE CENTRAL INPUT/OUTPUT UTILITY, (CIO)

 2 THE DISK OPERATING SYSTEM (D:)

 3 USING THE DOS 2 UTILITIES (DUP.SYS)

 4 THE CASSETTE HANDLER (C:)

 5 THE KEYBOARD HANDLER (K:)

 6 PRINTER HANDLER (P:)

 7 SCREEN EDITOR (E:)

 8 THE DISPLAY HANDLER (S:)

 9 THE RESIDENT DISK HANDLER

 10 SYSTEM INTERRUPTS

 11 THE FLOATING POINT ARITHMETIC PACKAGE

 12 BOOT SOFTWARE FORMATS

 13 THE SERIAL INPUT/OUTPUT INTERFACE (SIO)

 14 THE HARDWARE CHIPS

 15 DISPLAY LISTS

 16 PLAYER AND MISSILE (PM) GRAPHICS

 17 SOUND

 18 THE JOYSTICK PORTS

 19 MISC

 20 THE XL AND XE MODELS

 CHAPTER 1

 THE CENTRAL INPUT/OUTPUT UTILITY, (CIO)

 The ATARI computer uses a very easy-to-use input and output
 system called the Central Input/Output utility, or CIO. Nearly all
 input or output passes through this utility.

 CIO uses eight "channels" as paths for I/O. There are not really
 separate channels for I/O but the computer acts as if there were.
 Each channel is controlled by a 16 byte block of memory called an
 Input/Output Control Block or IOCB. The channels are used by putting
 the proper numbers in the proper IOCB bytes then jumping to the CIO
 routine. In BASIC, complete I/O operations can be as easy as typing a
 command such as LPRINT. In this case BASIC does all the work for
 you.

 THE CIO CHANNELS

 There are eight CIO channels, numbered from 0 to 7. In BASIC some
 channels are reserved for BASIC's use.

 BASIC CIO channel assignments

 Channel 0 Permanently assigned to the screen editor
 6 Used for graphics commands
 7 Used for the Cassette, disk and printer

 Channels 6 and 7 are free to use when they are not being used by
 BASIC. With machine language, all of the channels are available to
 the programmer.

 THE IOCB STRUCTURE

 The IOCB for channel zero starts at address $0340 (decimal 832). This
 is the only address you need to know. Indexing from this address is
 used to find all of the other bytes. Below are the names and uses of
 the IOCB bytes.

 IOCB bytes and uses:

 ADDRESS NAME EXPLANATION

 $0340 ICHID handler Identifier
 $0341 ICDNO device number (disk)
 $0342 ICCOM command
 $0343 ICSTA status
 $0344 ICBAL buffer address (low byte)
 $0345 ICBAH buffer address (high byte)

 $0346 ICPTL address of put byte
 $0347 ICPTH routine (used by BASIC)
 $0348 ICBLL buffer length (low byte)
 $0349 ICBLH buffer length (high byte)
 $034A ICAX1 auxiliary information
 $034B ICAX2 -
 $034C ICAX3 the remaining auxiliary
 $034D ICAX4 bytes are rarely used
 $034E ICAX5 -
 $034F ICAX6 -

 ICHID

 When a channel is open, the handler I.D. contains an index to the
 handler table. The handler table (to be discussed later) holds the
 address of the device handling routines. When the channel is closed
 ICHID contains $FF.

 ICDNO

 The device number is used to distinguish between multiple devices with
 the same name, such as disk drives.

 ICCOM

 The command byte tells CIO what operation to perform.

 CIO command codes

 HEX DEC

 +Open $03 3
 +close $0C 12
 get $07 7
 put $09 11
 input $05 5
 print $09 9
 +status
 request $0D 13
 +*special >$0D >13

 + command may be made to a closed channel
 * device specific commands

 ICSTA

 The status byte contains an error code if something goes wrong. If
 bit 7 is 0 there have been no errors.

 ICBAL and ICBAH

 Before a channel is opened, the buffer address bytes are set point to

 the block of memory which contains the name of the device the channel
 is to be opened to. Before actual input or output these bytes are set
 to point to the block of memory where the I/O data is stored or is to
 be stored.

 ICPTL and ICPTH

 The put routine pointer is set by CIO to point to the handlers'
 put-byte routine. When the channel is closed the pointer points to
 the IOCB-closed routine. This pointer is only used by BASIC.

 ICBLL and ICBLH

 The buffer length bytes show the number of bytes in the block of
 memory used to store the input or output data. (See ICBAL and ICBAH.)
 If the amount of data read during an input operation is less than the
 length of the buffer, the number of bytes actually read will be put in
 ICBLL and ICBLH by CIO.

 ICAX1 through ICAX6

 The auxiliary information bytes are used to give CIO or the device any
 special information needed.

 OPENNING A CIO CHANNEL

 Before using a CIO channel it must be assigned to an I/O device. In
 machine language you start by putting the channel number in the four
 high bits of the 6502 X register (X = $30 for channel three). Next
 you place the necessary codes (parameters) into IOCB 0 indexed by X.
 The X register will cause the numbers to be offset in memory by 16
 times the channel number. This puts the numbers into the correct IOCB
 instead of IOCB 0. Below are the parameters used to open a channel.

 Channel-open parameters:

 ICCOM open code
 ICBAL address of device name
 ICBAH in memory
 ICAX1 direction code
 ICAX2 zero

 The direction code byte in ICAX1 takes on the following format:

 ICAX1 format for opening a channel

 7 6 5 4 3 2 1 0

 ICAX1 | W R |

 8 4 2 1

 W 1 = open for output (write)
 R 1 = open for input (read)

 ICAX1 may have the following data

 CIO direction codes

 HEX DEC operation

 $04 4 input
 $08 8 output
 $0C 12 input and output (cannot change the length
 of a disk file)

 ICBAL and ICBAH point to the device name stored in memory. The device
 and file name must be followed by 0 or $9B (decimal 155).

 Once the parameters are set, jumping (JSR) to the CIO vector

 (CIOV) at address $E456 (58454) will cause the channel to be opened.
 In the following example a basic knowledge of assembly language is
 assumed.

 Routine to open channel 1 to the keyboard:

 ICHID = $0340
 ICCOM = ICHID+2
 ICAX1 = ICHID+10
 ICAX2 = ICHID+11
 IOCB1 = $10 channel in four high bits
 CIOV = $E456
 OPEN = $03
 OREAD = $04 ;open for input
 ERROR = (address of error handling routine)
 ;
 START LDX IOCB1
 LDA OPEN
 STA ICCOM,X
 LDA <NAME
 STA ICBAL,X
 LDA >NAME
 STA ICBAH,X
 LDA OREAD
 STA ICAX1,X
 LDA #0
 STA ICAX2,X
 JSR CIOV
 BPL OK
 JMP ERROR
 ;
 NAME .BYTE "K:",$9B
 OK (program continues here)

 To open a CIO channel in BASIC the OPEN command is used.

 BASIC OPEN command format:

 OPEN #channel,aux1,aux2,device:file name

 aux1 = direction code
 aux2 = special code

 To open channel 1 to the keyboard in BASIC Type:

 OPEN #1,4,0,"K:"

 The third parameter, aux2, is a rarely used special parameter. One
 use is to keep the screen from erasing when changing graphics modes.

 The fourth parameter is the device to open the channel to. It may be
 either a string in quotes or a string variable.

 CIO device names

 C cassette recorder
 *D disk drive
 E screen editor
 K Keyboard
 P printer
 *R RS 232 I/O port
 S screen handler

 * Uses a non-resident handler loaded by the device at
 power-up.

 The device name must usually be followed by a colon. With the disk
 drive a file name is expected after the device name. The screen
 handler is used for graphics. The screen editor uses both the
 keyboard handler and the screen handler to work between the keyboard
 and screen.

 USING AN OPEN CHANNEL

 Once a channel is opened to a device you have several options:

 INPUT: (ICCOM = $05)

 The computer reads data from the device until a carriage-return is
 read (decimal number 155, hex $9B) or the end of the file (EOF) is
 reached. A carriage return is also known as an End-Of-Line or EOL.
 The IOCB input parameters are:

 IOCB input parameters:

 ICCOM get record code
 ICBAL address of buffer to
 ICBAH store the data in
 ICBLL length of the data

 ICALH buffer

 The following routine demonstrates the input command in assembly
 language. Some of the equates are in the channel openning example
 above.

 Input routine:

 GETREC = $05
 BUFF = (address to store data at)
 BUFLEN = (number of bytes available at storage address)
 :
 LDX IOCB1
 LDA GETREC
 STA ICCOM,X
 LDA < BUFF
 STA ICBAL,X
 LDA > BUFF
 STA
 ICBAH,X
 LDA < BUFLEN
 STA ICBLL,X
 LDA > BUFLEN
 STA ICBLH,X
 JSR CIOV
 BPL OK2
 JMP ERROR
 :
 OK2 (continues if no errors)

 If the data retrieved is shorter than the prepared buffer, the number
 of bytes actually read will be put into ICBLL and ICBLH.

 In BASIC, the INPUT command is used.

 BASIC INPUT command format:

 INPUT #channel,string variable

 or

 INPUT #channel,arithmetic variable

 For example:

 INPUT #1,IN$

 The above commands will cause the data from the device to be put into
 the specified buffer (IN$ in the BASIC example) until an EOL is
 reached. If the INPUT statement is used again, without closing the
 channel, the computer will get more data from the device until another
 EOL is read or the end of the file is reached. The new data will
 write over the old data in the input string or buffer. If an
 arithmetic variable is used, only numbers can be input.

 PRINT: (ICCOM = $09)

 In assembly language the print command is identical to the input
 command. The only difference is that the PUTREC code ($09) is stored
 in ICCOM. Of course the buffer bytes of the IOCB then specify the
 block of memory to be output from rather than input to. With the
 print command, EOLs within the string or buffer are ignored but an EOL
 is placed at the end of the data when sent to the device.

 In BASIC, the PRINT command is used like INPUT except you want to use
 a semicolon instead of a comma to separate parameters. For example:

 PRINT #1;OUT$

 or

 PRINT #1;"HELLO"

 If you use a comma, ten space characters will be sent before the
 string.

 If the print command is used again, without closing the channel, the
 new data will be appended to the end of the data previously sent. Old
 data will not be written over.

 GET: (ICCOM = $07)

 In BASIC this command inputs a single byte of data from the device.
 EOLs are ignored. In BASIC, GET is used like INPUT except an
 arithmetic variable must be used. For example:

 GET #1,IN

 If the get command is used again the next byte from the device will be
 read. If the end of a file is reached an error will occur.

 There is no command in BASIC to input an entire file without stopping
 at each EOL. If you wish to ignore EOLs while reading a file to a
 string, you must use the GET command. Each byte of data is then put
 into the string by the program.

 EXAMPLE:

 10 OPEN #1,4,0,"D:TEST"
 20 TRAP 60:REM GOES TO LINE 60 WHEN END OF FILE ERROR OCCURS
 30 GET #1,IN
 40 IN$(LEN(IN$)+1)=CHR$(IN)
 50 GOTO 30
 60 CLOSE #1

 In assembly language, the get command can be used to get any number of
 bytes from the device. It works just as INPUT does except EOLs are
 ignored.

 IOCB get-byte parameters:

 ICCOM get-character (single byte) code
 ICBAL \
 ICBAH same as in input
 ICBLL
 ICBAH /

 Other than the ICCOM code (GETCHR = $07) this command is identical to
 the input command.

 PUT: (ICCOM = $0B)

 In BASIC, PUT is the opposite of GET. It outputs a single byte from a
 variable to the device. PUT is used the same as GET. For example:

 PUT #1,OUT

 In assembly language, the command byte of the IOCB is loaded with the
 put-character code (PUTCHR = $0B). Otherwise the PUT command is
 identical to GET.

 CLOSING A CHANNEL

 Closing a channel frees it for use by another device or for changing
 parameters. In assembly language the close code is put into the
 command byte of the IOCB then the CIOV call is made.

 IOCB close command:

 CLOSE = $0C
 :
 LDX IOCB1
 LDA CLOSE
 STA ICCOM,X
 JSR CIOV

 In BASIC, use the CLOSE command followed by the channel number.

 CLOSE #1

 With the disk drive, the file name is not put into the directory until
 the channel is closed.

 THE DEVICE TABLE

 CIO uses a jump table located at $031A (794). When a CIO call is
 made, CIO searches the table for the one-byte device name. The two
 bytes following the device name contain the address of the device
 handler's vector table. CIO searches the device table from the end,
 $033D (829) to the beginning. This way, if a custom handler has ben
 substituted for a resident handler, the custom handler will be found
 first. (custom handlers cannot be inserted directly in the place of
 resident handlers in the device table.)

 Each handler has its' own vector table. This vector table is 16 bytes
 long. The two-byte vectors point to the various handler routines.
 The vectors are stored in the vector table in the following order:

 Handler vector table order

 open
 close
 get byte
 put byte
 get stat
 special
 JMP init code (3 bytes)

 The open routine should validate the ICAX parameters and check for
 illegal commands.

 The close routine should send any remaining data in the buffer to the
 device, mark the End-Of-File and update any directories, etc.

 The get byte routine should get a byte from the device or the handler
 buffer and put it in the 6502 A register. Handlers with long timouts
 must monitor the break key flag and put a $80 in the 6502 Y register
 if the [BREAK] key is pressed.

 The put byte routine should send the byte in the 6502 A register to
 the device or handler buffer. If the buffer fills, it should be sent
 to the device. BASIC can call the put byte routine without using
 CIO.

 The get status routine may get 4 bytes of status information from the
 device and put them in DVSTAT [$02EA] to DVSTAT+3.

 For special commands the handler must examine the command byte and
 find the proper routine entry point.

 In all cases the status (error code) of the operation should be put in
 the 6502 Y register.

 To be compatible with all versions of the operating system, the
 handler must redirect DOSINI [$000C,2 (12)] for initialization upon
 reset. This initialization must restore the vectors in the handler
 vector table and jump to the origional DOSINI vector.

 SPECIAL COMMANDS

 Some devices have special CIO commands. These are known as device
 specific commands. In assembly language these commands are executed
 just as any other CIO command is. In BASIC the XIO command is used.
 An example of the XIO command is:

 XIO command code #channel,aux1,aux2,device:file name

 To open a channel with the XIO command instead of the OPEN command
 use:

 XIO 3 #1,4,0,"K:"

 Note that the above command is identical to the OPEN command except
 "XIO 3" is used instead of "OPEN". Also note that $03 is the IOCB
 open code for ICCOM.

 Useful database variables and OS equates

 DOSINI $000C,2 (12): initialization vector
 BRKKEY $0011 (17): break key flag
 ICHID $0340 (832): start of IOCBs
 ICDNO $0341 (833):
 ICCOM $0342 (834):
 ICSTA $0343 (835):
 ICBAL $0344 (836):
 ICBAH $0345 (837):
 ICPTL $0346 (838):
 ICPTH $0347 (839):
 ICBLL $0348 (840):
 ICBLH $0349 (841):
 ICAX1 $034A (842):
 ICAX2 $034B (843):
 HATABS $031A,16 (794): device handler table
 CIOV $E456 (58454): CIO entry vector

 CHAPTER 2

 THE DISK OPERATING SYSTEM (D:)

 The disk operating system program (DOS) is also called the file
 management system (FMS). DOS is not a permanent part of the computer,
 it is loaded in upon power-up if a disk drive is attached to the
 computer.

 When the computer is turned on, one of the first things it does is
 send a request to the disk drive to load DOS into the computer. This
 startup operation is called booting. The word boot is short for
 bootstrapping -- the start-up process of early computers. The term
 comes from "lifting one's self by one's boot straps".

 Anytime the disk boots, the computer tries to read a program starting
 at sector 1 and continuing in sequence. If the disk has DOS on it,
 the first three sectors, called the boot record, have a program which
 loads the DOS.SYS file. If there is no DOS.SYS file on the disk the
 computer will display:

 | BOOT ERROR |
 | BOOT ERROR |
 | BOOT ERROR |
 | BOOT ERROR |
 | BOOT ERROR |
 | BOOT ERROR |
 | (etc.) |
 | |
 | |

 When a disk is formatted, the drive read/write head passes over the
 entire disk and puts magnetic marks on it. These marks divide the
 disk into 32 concentric tracks. With DOS 2.0 each track is divided
 into 18 sectors, each holding 128 bytes of data. With DOS 2.5 there
 are 32 sectors per track giving a total of 1,024 sectors.

 Each sector on the disk is marked with a reference number from 1 to
 720. Unfortunately, the writers of DOS 2.0 didn't know this so they
 wrote the DOS to use sectors numbered from 0 to 719. As a result, DOS
 2.0 cannot access sector 720. The designers of the disk drive were
 the guilty party in this case. It is normal to number from 0 in
 computers. With DOS 2.5, sectors 720 - 1,024 can be accessed
 normally.

 Sector 720 can be accessed using the computer's resident disk handler.
 Some software writers use sector 720 to hide special information to
 make their programs difficult to copy.

 DOS 2 SECTOR ASSIGNMENTS

 Sectors 1 through 3 are called the boot record. They contain a
 program which loads the DOS.SYS file into memory.

 Sector 360 is called the Volume Table of Contents or VTOC. The main
 purpose of the VTOC is to keep track of what sectors are occupied.
 Bytes 3 and 4 of the VTOC tell how many sectors are available.
 Starting at byte 10 is the Volume Bit Map. Each byte in the VBM tells
 the status of eight sectors. If a bit is a 1 the sector is available.
 If a bit is a 0 the sector is occupied.

 Sectors 361 through 368 contain the disk directory. Each directory
 sector holds eight file names. The first byte of a file name is
 called the flag byte. It tells the status of that file.

 Directory flag byte.

 7 6 5 4 3 2 1 0

 | flag byte |

 Bits: 7 1 = file deleted
 6 1 = file in use
 5 1 = file locked
 0 1 = open for output

 The next two bytes tell how many sectors are in the file. The two
 bytes after them tell the starting sector of the file. The last 11
 bytes contain the file name.

 Sector 720 cannot be accessed with DOS 2.0.

 The boot record, VTOC, directory and sector 720 use 13 sectors. This
 leaves 707 sectors for storing files with DOS 2.0.

 Each file sector has 125 bytes of data. The last three bytes tell how
 many bytes of the sector are used, what directory entry the sector
 belongs to and which sector is next in the file.

 File sector structure

 7 6 5 4 3 2 1 0

 | data | byte 0
 - - - -
 | bytes | byte 124

 | Dir. No. |hi | byte 125

 |forward pointer| byte 126

 |S| byte count | byte 127

 hi = high 2 bits of forward pointer
 S = Short sector flag. 1 = short sector (End Of File)

 If the directory number does not match the order of the file name in
 the directory, an error 167 (file number mismatch) will occur.

 As a file is written to an empty disk it is put in consecutive
 sectors, 125 bytes at a time. After the file is written, the VTOC and
 directory are updated. When new files are written they also use
 consecutive sectors.

 When a file is deleted the status bit of the directory is changed to
 show that the file has been deleted. DOS then tracks the file, sector
 by sector, to find what sectors are used. Finally the VTOC is updated
 to show that the deleted file's sectors are available for new files.
 The file is not erased from the disk; only the VTOC and directory are
 changed.

 When a file is deleted, an "island" of free sectors may be left on the
 disk. When a new file is then written to the disk it will first use
 these new free sectors. When the island is used up, DOS will skip
 over the occupied sectors to the next free sector. This is the reason
 for the sector link. A file can end up with it's sectors scattered
 all over a disk. It can be complicated but it's efficient.

 DISK FILE STRUCTURE

 The first few bytes of a file may tell DOS or another program what
 kind of file it is. These information bytes are called a header.

 A text file is any file which has no header. A listed BASIC program
 is a type of text file. A letter from a word processor is another.

 A binary load file is a file intended to load to a specific address in
 memory. The first two bytes of a binary load file are decimal 255.
 The next two bytes hold the address at which the file is to load. The
 last two header bytes tell the ending address for the file. If the
 file is a program and is to run automatically, the initialization and
 run address are appended to the end of the file.

 binary load file header

 Decimal Hexadecimal

 255 identifier FF
 255 FF
 0 start 00
 7 07

 15 end FF
 8 08

 The above file would load at address $0700 (1792 decimal) and end at
 address $08FF (2063). If a binary load file has initialization and
 run address appended to it they take on the following format:

 Init and run tailer

 CHR Decimal Hexadecimal

 init address format

 [b] 226 identifier E2
 | 2 02
 [c] 227 E3
 | 2 02
 n address nn
 n nn

 run address format

 [diamond] 224 identifier E0

 | 2 02
 [a] 225 E1
 | 2 02
 n address nn
 n nn

 []=inverse video

 A program which doesn't need special initialization can be run at the
 init address. Otherwise, an RTS instruction is expected at the end of
 the initialization section. The computer will then jump to the run
 address if specified.

 INSIDE THE COMPUTER

 DOS uses the computer's CIO utility. When a DOS disk is booted a
 non-resident handler is loaded into memory. A new handler name, D, is
 then added to the handler table. When CIO is called with a device
 name of D: or Dn:, CIO will search the handler table for that device
 name. If the 'D' is found, the next two bytes in the table point to
 the DOS entry address.

 DOS FILE NAME CONVENTIONS

 DOS is unique among CIO handlers in that it requires an eight
 character file name to follow the device name. This file name may be

 followed by a period and then a three character extender.

 EXAMPLES: D:TEST, D2:FIREMAN, D:VENTURE.EXE, D:CHAPTER.001

 The D2: is used for drive number two if present.

 The file name must use upper-case letters or numbers. The first
 character must always be a letter.
 WILD CARDS

 The characters * and ? may be used as wild cards. * means any
 combination of characters and ? means any single character.

 EXAMPLES: D:P* any file beginning with P and
 without an extender
 D:*.EXE any file with the extender .EXE
 D:*.* any file.
 D:F?REMAN one unknown character,
 FIREMAN or FOREMAN will match

 Wild cards can only be used to load, delete, lock and unlock files.

 When loading a file using wild cards, only the first matching file

 will be loaded.

 When renaming a file, both the new and old names are expected after
 the device name.

 EXAMPLE: D:OLDNAME.BAS,NEWNAME.BAS

 To format a disk, only the device name (D: or Dn:) is needed.

 USING DOS

 When a CIO channel is opened to the disk drive it must actually be
 opened to a specific file on the disk. The device name in the open
 command must be followed by a file name.

 When a channel is opened to the disk, two special parameters may be
 used in ICAX1.

 ICAX1 for disk open:

 7 6 5 4 3 2 1 0

 | W R D A|

 D 1 = open to read the directory instead of a file
 A 1 = append data to the end of the file

 This gives the following extra ICAX1 options.

 Disk specific ICAX1 options:

 HEX DEC

 $06 6 open to read directory
 $09 9 output, append to the end of an
 existing file

 READING THE DIRECTORY

 When the directory is read, each file name is treated as if it were
 followed by an EOL. A loop must be used to read all of the file names
 in the directory. The last entry read is the free sector count.
 After it is read, another read operation will result in an End-Of-File
 error.

 The disk drive has a number of device specific commands other than the
 regular CIO commands. From BASIC the XIO command is used to access
 these commands. The XIO command allows you to directly load the IOCBs
 from BASIC. Each parameter of the XIO command places values in
 certain bytes of an IOCB.

 XIO command format:

 XIO command channel,aux1,aux2,device:file name

 Note that the parameters resemble the BASIC OPEN command. The BASIC
 OPEN command is identical to it's equivalent XIO command.

 XIO commands specific to the disk drive.

 RENAME XIO $20 (32)
 DELETE XIO $21 (33)
 LOCK XIO $23 (35)
 UNLOCK XIO $24 (36)
 POINT XIO $25 (37)
 NOTE XIO $26 (38)
 FORMAT XIO $FE (254)

 EXAMPLES:

 XIO 33 #1,0,0,"D:JUNK" = delete file named D:JUNK
 XIO 32 #1,0,0,"D:OLD,NEW" = change name of D:OLD to D:NEW

 NOTE and POINT can also be used directly from BASIC. NOTE finds the
 current position of the read/write head on the disk. POINT moves the
 read/write head to the desired position.

 USING NOTE AND POINT

 The command format for NOTE and POINT is as follows:

 NOTE \
 channel,sector,byte
 POINT/

 EXAMPLE:

 NOTE #1,SECT,BYTE

 BASIC requires the sector and byte parameters in both commands to be
 variables. Fixed numbers cannot be used. If you try to do a POINT to
 a sector outside the file the channel is open to, a point error will
 occur. Care may need to be taken to be sure the file being accessed
 is in contiguous sectors on the disk. If it is not, it will be
 difficult to know where to do points to.

 One use of NOTE is to use the command immediately after opening a
 channel to a disk file. After the NOTE command, the parameter
 variables contain the coordinates of the first byte of the file. They
 can then be used as a reference for the POINT command.

 In assembly language, ICAX3 and ICAX4 are used for the sector number
 (lsb,msb). ICAX5 is used for the byte number.

 STATUS REQUEST

 If the status request command is used, one of the following values
 will be found in ICSTA and the 6502 Y register.

 HEX DEC

 $01 1 OK
 $A7 167 file locked
 $AA 170 file not found

 CHAPTER 3

 USING THE DOS 2 UTILITIES (DUP.SYS)

 If you boot a DOS disk with no cartridge in the slot or with BASIC
 disabled (by holding the OPTION key), DOS will try to load the file
 named DUP.SYS. This is the disk utility file. When using BASIC,
 typing DOS [RETURN] will load the DUP.SYS file. When the utilities
 are loaded the menu will appear on the screen.

 THE DOS UTILITIES MENU

 DISK OPERATING SYSTEM II VERSION 2.0S
 COPYRIGHT 1980 ATARI

 A. DISK DIRECTORY I. FORMAT DISK
 B. RUN CARTRIDGE J. DUPLICATE DISK
 C. COPY FILE K. BINARY SAVE
 D. DELETE FILE(S) L. BINARY LOAD
 E. RENAME FILE M. RUN AT ADDRESS
 F. LOCK FILE N. CREATE MEM.SAV
 G. UNLOCK FILE O. DUPLICATE DISK
 H. WRITE DOS FILES

 SELECT ITEM OR [RETURN] FOR MENU

 [A] DIRECTORY

 After pressing [A] [RETURN] you will get the prompt:

 DIRECTORY--SEARCH SPEC,LIST FILE?

 If you want to see the entire directory just press [RETURN] again. If
 you wish, you may type in a specific file name (D: is optional) or
 wild cards to search for. If you specify a search spec only matching
 files will be displayed.

 If you want, you can have the directory sent to another device. To do
 this type a comma and the device name. For example, if you type ,P:
 the directory will be sent to the printer.

 [B] RUN CARTRIDGE

 If a cartridge was inserted or BASIC was not disabled when the
 computer was turned on, [B] [RETURN] will run that cartridge or
 BASIC.

 [C] COPY FILE

 This option will copy a file to another part of the same disk (with a
 different file name) or copy from one disk drive to another. When you
 press [C] [RETURN] you will be given the prompt:

 COPY--FROM,TO

 Type the devices and file names separated by a comma.

 EXAMPLES:

 FOREMAN,FIREMAN

 or

 D1:TEST,D2:TEST

 The first example will copy to the same disk. The second example will
 copy from disk drive one to disk drive two.

 If you want to have the first file appended to the end of the second
 file type /A after the file names.

 EXAMPLE:

 RUNMENU.EXE,AUTORUN.SYS/A

 If the files are binary load files, this will cause both files to be
 saved as one file. When the load command is used they will both be
 loaded and run.

 [D] DELETE FILE(S)

 After pressing [D] [RETURN] you will get the prompt:

 DELETE FILE SPEC

 After typing the file name you will be asked to confirm the file to
 delete.

 DELETE FILE SPEC
 DELETE-D1:JUNK ARE YOU SURE?

 Press [Y] if the correct file is displayed. If you use wild cards you
 will be asked to confirm each matching file.

 [E] RENAME

 Upon typing [E] [RETURN] you will be given the prompt:

 RENAME-GIVE OLD NAME,NEW

 Type the file name you want to change and the new name separated by a
 comma.

 EXAMPLE:

 COLT,HORSE

 WARNING! Do not rename a file to a name which already exists on the
 disk. You will end up with a duplicate file name and will not be able
 to access one of them. Attempting to rename or delete one of them
 will rename or delete both. The only way to fix a duplicate file name
 is with a sector editor or other special utility.

 [F] LOCK FILE

 A locked file cannot be written to, renamed or deleted. To lock a
 file type [F] [RETURN]. You will get the prompt:

 WHAT FILE TO LOCK?

 Type the file name you want to lock. Wild cards will cause all
 matching files to be locked.

 [G] UNLOCK FILE

 Used the same as lock.

 [H] WRITE DOS FILES

 This option will write the DOS.SYS and DUP.SYS files to a formatted
 disk. When you type [H] [RETURN] you will receive the prompt:

 DRIVE TO WRITE DOS FILES TO?

 Type the number of the drive. If the drive contains a formatted disk
 the dos files will be written to it.

 [I] FORMAT DISK

 This option formats a new disk or erases a disk with files on it.
 Typing [I] [RETURN] will get you the prompt:

 WHICH DRIVE TO FORMAT

 Be sure you have the correct disk in the proper drive then type the
 drive number. It is impossible to recover files on a disk formatted
 by accident.

 While the disk is being formatted the drive will check to be sure the
 disk is formatted correctly. If not, the drive attempt to format the
 disk again. If the disk is defective the drive will not finish the
 formatting process.

 [J] DUPLICATE DISK

 This option will copy an entire disk except for sectors listed as free
 in the VTOC. Some programs are copy-proofed by changing the VTOC to
 show that some occupied sectors are empty. For such disks, a program
 which copies the entire disk is needed.

 When you press [J] [RETURN] you will be given the prompt:

 DUP DISK--SOURCE,DEST DRIVES?

 If you are using only one disk drive, type 1,1. If you have only one
 drive you will be told when to swap disks.

 [K] BINARY SAVE

 This option saves a block of memory as a binary load file. When you
 type [K] [RETURN] you will be given the prompt:

 SAVE-GIVE FILE,START,END(,INIT,RUN)

 Type the desired file name and a comma. Now type the start and end
 addresses of the memory block to be saved, in hexadecimal numbers,
 separated by commas. If the file is a program which is to
 automatically run when loaded, give the initialization address, if
 needed, then the run address.

 EXAMPLE:

 CHASE.EXE,0700,09FF,,0700

 This will save the block of memory from address 0700 to 09FF. The
 program is not initialized before running so there is no address typed
 after the third comma. When the program is loaded the computer will
 jump to address 0700, as specified in the last parameter, to run the
 program.

 [L] BINARY LOAD

 To load a binary file type [L] [RETURN]. You will get the Prompt:

 LOAD FROM WHAT FILE?

 Type the file name and the file will be loaded. If wild cards are
 used, only the first matching file will be loaded.

 [M] RUN AT ADDRESS

 Typing [M] [RETURN] will get the prompt:

 RUN FROM WHAT ADDRESS?

 Type the hexadecimal address of the program you want to run.

 [N] CREATE MEM.SAV

 A MEM.SAV file is used by BASIC and some other programs to save the
 part of memory which the DUP.SYS file loads into. If there is no
 MEM.SAV file on the disk when you go to the DOS utilities, you will
 loose that part of memory. With BASIC you will loose your program.

 When you type [N] [RETURN] you will get the prompt:

 TYPE Y TO CREATE MEM.SAV

 Typing [Y] [RETURN] will create a MEM.SAV file on the disk in drive
 one.

 [O] DUPLICATE FILE

 This option is used to copy a file from one disk to another, using
 only one disk drive. When you type [O] [RETURN] you will get the
 prompt:

 NAME OF FILE TO MOVE?

 If you use wild cards you will be asked to swap disks for each
 matching file.

 DOS 2.5 also has option:

 [P] FORMAT SINGLE

 DOS 2.5 normally formats disks to use "enhanced" density. This option
 will format a disk in single density for use with the 810 drive.

 DOS 2.5 also has some special utilities on the master disk. Use the
 binary load option to run them.

 RAMDISK.SYS

 This program will cause the extra bank of memory in the 130XE to act
 like a disk drive (called D8:). If this program is on the disk it
 will automatically run. It need not be renamed to AUTORUN.SYS.

 COPY32.COM

 Copies DOS 3 files to DOS 2.

 DISKFIX.COM

 Can make certain "repairs" to a disk, such as restoring deleted
 files.

 SETUP.COM

 Used to change the default configuration of DOS.

 AUTORUN.SYS (DOS 2.0 and 2.5)

 This program is needed to operate the RS-232 ports on the 850
 interface. If you don't want this program to automatically load when
 you boot with the master disk, rename the file to RS232.

 SPECIAL DOS INFORMATION

 When DOS is in memory, changes can be made to the DOS program. These
 changes can be made by poking the changes into memory. If you want to

 make the changes permanent, you can type DOS [RETURN] to load the
 utilities. From the utilities menu you can use the write DOS files
 option to save the changes on disk. Some of the useful changes you
 can make follow.

 POKE 1913,80

 This turns off the write verify and speeds up disk writing.

 POKE 1913,87

 This turns write verify on

 POKE 5903,42
 POKE 5904,46
 POKE 5905,82
 POKE 5906,85
 POKE 5907,78
 POKE 5908,155

 This causes any binary
 file with the extender .RUN to be loaded
 automatically when the computer is turned on.

 POKE 5903,65
 POKE 5904,85
 POKE 5905,84
 POKE 5906,79
 POKE 5907,82
 POKE 5908,85

 This returns the DOS to normal, Automatically loading files named
 AUTORUN.SYS.

 DOS 2.0 DOS 2.5

 POKE 3772,255
 POKE 3818,64 POKE 3774,64
 POKE 3822,123 POKE 3778,123

 This will cause DOS to accept lower-case as well as upper-case letters
 in file names. It will also now accept @,[,\,],^ and _ .

 POKE 3772,223
 POKE 3818,65 POKE 3774,65
 POKE 3822,91 POKE 3778,91

 This will change DOS back to normal, accepting only upper-case letters
 and numbers.

 CHAPTER 4

 THE CASSETTE HANDLER (C:)

 The cassette handler sends data to the cassette recorder in blocks of
 128 bytes each. The blocks are sent in the following format:

 Cassette record format

 |0 1 0 1 0 1 0 1| speed measurement bytes

 |0 1 0 1 0 1 0 1|

 | control byte |

 | 128 |
 = data =
 | bytes |

 | checksum | handled by SIO

 The control byte may have one of the following values.

 $FC (252) record is full.

 $FA (250) partly full, next record is EOF.

 $FE (254) EOF record, data section is all zeroes.

 The cassette handler has two modes of operation. The first mode uses
 only a short gap between records. It is called the no IRG
 (interrecord gaps) mode. The second mode uses longer gaps between
 records and is called the IRG mode. In the IRG mode the computer may
 stop the cassette recorder between records for processing data.

 When a channel is opened to the cassette recorder, bit 7 of ICAUX2 may
 be set to 1 (ICAX2 = $80 (128)). This will cause the cassette to use
 the no IRG mode.

 A cassette file starts with a 20 second mark tone. This tone is
 followed by the file records with 128 data bytes each. The final
 record is an End-Of-File record.

 The cassette is a straight-forward read/write device. There are no
 special functions other than those common to other CIO devices.

 The cassette motor is controlled by one of the controller port control
 registers. If bit 3 of PACTL [$D302 (54018)] is 0 then the cassette

 motor is on. The following BASIC commands will turn the cassette
 motor on and off.

 Cassette motor control.

 POKE 54018,PEEK(54018)-8 motor on
 POKE 54018,PEEK(54018)+8 motor off

 Useful data base variables and OS equates

 PACTL $D302 (54018): port A control register, bit 4
 controls cassette motor

 CHAPTER 5

 THE KEYBOARD HANDLER (K:)

 The keyboard is a read only device and therefore the keyboard handler
 has no output functions.

 The keyboard handler reads the keys as ATASCII codes. Each key is
 represented by one byte of data. Therefore, each time a key is
 pressed the data is treated as a byte of data just as data from any
 other device is. The only difference is that the computer must wait
 for the operator to press the keys as it reads the data.

 Whenever a key is pressed an IRQ interrupt is generated by the
 keyboard reading hardware. The internal code (not ATASCII) for the
 key just pressed is then stored in CH [$02FC (764)]. The code is then
 compared with the prior key code in CH1 [$02F2 (754)]. If the code in
 CH1 is different from the code in CH, the key is accepted. The code
 is then converted to ATASCII, and placed in the database variable
 ATACHR [$02FB (763)]. On XL and XE models, KEYDEF [$0079,2 (121)]
 points to the key-code-to-ATASCII conversion table. (This address is
 used by the the screen handler in 400/800 models).

 If the code in CH1 is the same as the code in CH, the new key code
 will not be accepted unless the key debounce timer, KEYDEL [$02F1
 (753)] is 0.

 When CIO is told to do an input operation from the keyboard, CH is
 checked to see if a key has been pressed. If CIO finds $FF (255) in
 CH, it waits until a key is pressed. If CH is not $FF, a key has been
 pressed and the ATASCII code for that key is taken from ATACHR. CH is
 then set to $FF.

 The data in CH is in the following format.

 Key code format:

 7 6 5 4 3 2 1 0

 |C|S| key code |

 C 1 = [CTRL] key is pressed
 S 1 = [SHIFT] key is pressed

 Anytime a key is pressed, CH is loaded with the key code. CH will
 hold the code until the computer is commanded to read the keyboard.
 Sometimes the computer will read a key which was pressed long ago. If
 you want to prevent this, load CH with $FF before reading the
 keyboard. (In BASIC use POKE 764,255.) This will clear out any old
 key pressings.

 Special function keys

 [CTRL][1] screen output start/stop
 [CTRL][2] BELL
 [CTRL][3] Generates End-Of-File status
 [/|\]
 or
 [/] inverse video toggle
 [CAPS LOWER] sets lower case
 [CTRL][CAPS] sets CTRL lock
 [SHIFT][CAPS] sets caps lock

 KEYBOARD REPEAT DELAY AND RATE CONTROL

 On the XL and XE, KRPDEL [$02D9 (729)] determines the delay before the
 key repeat begins. The value of this byte is the number of vertical
 blanks (1/60th second each) to delay. KEYREP [$02DA (730)] determines
 the repeat rate in vertical blanks.

 KEYBOARD CLICK

 The keyboard click of the XL/XE is heard through the TV speaker. The
 click may be turned off by putting $FF in NOCLIK [$02DB (731)].

 NON-HANDLER, NON-CIO KEYS

 The [OPTION], [SELECT] and [START] keys are read from the console
 switch register, CONSOL [$D01F (53279)].

 The console switch register

 7 6 5 4 3 2 1 0

 CONSOL |0 |0 |0 |0 |SP|OP|SE|ST|

 8 4 2 1

 ST 0 = [START]
 SE 0 = [SELECT]
 OP 0 = [OPTION]
 SP Console speaker. set to 1 during vertical blank.
 toggleing this bit operates the speaker (which
 is heard through the TV on XL/XE models).
 This bit always reads 0

 The [HELP] key on XL and XE models is read from HELPFG, [$02DC (732)].
 This address is latched and must be reset to zero after being read.

 The [HELP] key register

 7 6 5 4 3 2 1 0

 HELPFG |C S 0 H 0 0 0 H|

 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 H 1 = [HELP] (bits 0 and 4)
 S 1 = [SHIFT]
 C 1 = [CONTROL]

 Useful database variables and OS equates

 KEYDEF $0079,2 (121): key code coversion table vector (XL/XE)
 KRPDEL $02D9 (729): delay before key repeat (XL/XE)
 KEYREP $02DA (730): key repeat rate (XL/XE)
 NOCLIK $02DB (731): $FF turns off key click (XL/XE)
 HELPFG $02DC (732): [HELP] key (XL/XE)
 ATACHR $02FB (763): ATASCII Code for last key
 CH $02FC (764): keycode, $FF if no key has been pressed
 BRKKEY $0011 (17): break key flag, 0 = break key pressed
 SRTIMR $022B (555): Key delay and repeat timer
 SHFLOK $02BE (702): SHIFT/CTRL lock flag
 $00 = lower case
 $40 (64) = upper case lock
 $80 (128) = CTRL lock
 INVFLG $02B6 (694): inverse video flag, non-zero = inverse
 CONSOL $D01F (53279): start, select and option keys
 IRQEN $D20E (53774): IRQ interrupt enable
 bit 7 enables [BREAK]
 bit 6 enables other keys

 shadow registers

 POKMSK $0010 (16): IRQEN shadow

 CHAPTER 6

 THE PRINTER HANDLER (P:)

 The printer is a write only device so the printer handler has no input
 functions. The printer handler has no special functions other than
 the CIO functions common to all other devices.

 Although many printers have special functions, the printer handler has
 no control over them. See your printer manual for information on
 special functions.

 CHAPTER 7

 SCREEN EDITOR (E:)

 The screen editor uses both the keyboard handler and the screen
 handler to provide interactive control of the computer. In fact, the
 keyboard handler, the screen handler and the screen editor are
 contained in a single section of code and are therefore very closely
 related.

 The editor works with one line of characters at a time. The lines it
 works with are called logical lines and are up to three screen lines
 long.

 The screen editor inputs data from the keyboard and then prints the
 data on the screen. When the [RETURN] key is pressed, the editor
 inputs all of the data on the present logical line for processing by
 CIO.

 If characters are typed on the screen, and then the cursor is moved
 off the line, then back on the line, and new characters are typed,
 only the characters to the right of the reentry point of the cursor
 are input when [RETURN] is pressed. However, if the cursor is moved
 off the line again, then moved back on, all characters on that logical
 line are input.

 If bit 0 of ICAX1 is 1, the editor will act as if the [RETURN] key is
 being held down. This bit may be changed at any time.

 Editor control codes

 The screen editor treats certain ATASCII codes as special control
 codes.

 Screen editor control codes

 KEY HEX DEC FUNCTION

 [RETURN] $9B 155 carriage return or EOL
 [CLEAR] $7D 125 Clear screen,put cursor in upper left
 [UP ARROW] $1C 28 Move cursor up one screen line
 [DOWN] $1D 29 down one line
 [LEFT] $1E 30 left one character
 [RIGHT] $1F 31 right one character
 [BACK S] $7E 126 Back-space operation
 [SET TAB] $9F 159 sets tab stop at cursor
 [CLEAR
 TAB] $9E 158 Clear tab stop at cursor
 [TAB] $7F 127 move to next tab stop
 [SHIFT]
 [INSERT] $9D 157 Make space for a new line
 [SHIFT]

 [DELETE] $9C 156 delete the logical line at the cursor
 [CTRL]
 [INSERT] $FF 255 make room for a character
 [CTRL]
 [DELETE] $FE 254 delete character at cursor
 [ESCAPE] $1B 27 causes next non-EOL code to be
 displayed as an ATASCII character, even if it is an editor
 control code
 [CTRL][1] screen print start/stop
 [CTRL] $FD

 CHAPTER 8

 THE DISPLAY HANDLER (S:)

 The display handler manages the computer's video display. Although no
 data ever leaves the computer through it, the display is treated like
 any other CIO device. Data sent to the screen may be displayed as
 either characters or point by point graphics. Although it is only
 visible in the 40 column text mode, mode 0, there is a cursor on the
 screen in all of the text or graphics modes. Whenever a character or
 graphics point is put on the screen, the cursor moves just as in mode
 0.

 The display is capable of both input and output. Information can be
 put on the screen with any of the CIO output commands. An input
 command will find whatever is on the screen at the position of the
 cursor.

 When text or graphics is sent to the screen it is actually stored in
 an area of memory called the display buffer. What you see on the
 screen is the computer's interpretation of the data stored there.
 This will be explained further as each mode is covered.

 DISPLAY HANDLER SPECIAL FUNCTIONS:

 DRAW
 FILL

 SPECIAL ERROR STATUSES:

 $84 (132) Invalid special command.
 $8D (141) Cursor out of range.
 $91 (145) Nonexistant screen mode.
 $93 (147) Insufficient ram for screen mode.

 TEXT MODE 0

 In graphics mode 0, data passes through CIO, and is stored in the
 display buffer in the following format.

 7 6 5 4 3 2 1 0

 |I| Data |

 I 1 = displays character in inverse video.

 Bits 0 through 6 select one of the 128 characters in the ATASCII set.

 If bit seven = 1, the character is displayed in inverse video.
 Converting the above byte to decimal will give the BASIC ASC(x)
 equivalent.

 The characters displayed in the text modes are determined by tHE
 ATASCII character set. This is a bit by bit representation of how the
 characters appear on the screen. The character set starts $E000
 (57344) in the operating system ROM. From there, for 1K of memory,
 each eight bytes holds a "bit map" of a particular character. Below
 is how the letter A is stored in the character set.

 Letter A as represented in the C-set

 7 6 5 4 3 2 1 0

 $E208 |0 0 0 0 0 0 0 0|

 |0 0 0 1 1 0 0 0| * *

 |0 0 1 1 1 1 0 0| * * * *

 |0 1 1 0 0 1 1 0| * * * *

 |0 1 1 0 0 1 1 0| * * * *

 |0 1 1 1 1 1 1 0| * * * * * *

 |0 1 1 0 0 1 1 0| * * * *

 $E20F |0 0 0 0 0 0 0 0|

 XL and XE models have an international character set starting at $CC00
 (55224). In this character set the graphics characters are replaced
 by international characters.

 Custom characters sets may be loaded at any free address which is a
 multiple of 1,024 ($0400, or 1K). The database variable CHBAS [$02F4
 (756)] stores the most significant byte (MSB) of the address of the
 active C-set. Since the LSB of the C-set address is always $00, no
 LSB is needed to find it.

 The data stored in the display buffer does not use the ATASCII code.
 A special code needed by the ANTIC chip is used.

 DISPLAY CODE / ATASCII CODE CONVERSION:

 ATASCII display

 $00 - $1F (0 - 31) = $40 - $5F (64 - 95)
 $20 - $5F (32 - 95) = $00 - $3F (0 - 63)
 $60 - $7F (96 - 127) = unchanged

 The codes for inverse video (the above codes with bit 7 set (= 1) or

 the above codes + 128 in decimal) are treated likewise.

 When you first turn on the computer, BASIC opens channel 0 to the
 screen editor (E:). The screen editor uses both the keyboard handler
 and the screen handler, in mode 0, to display characters when they are
 typed in.

 TEXT MODES 1 AND 2

 Graphics modes 1 and 2 offer a split screen configuration if desired.
 The split screen has four lines of mode 0 at the bottom of the
 screen.

 In mode 1 the screen holds 20 characters horizontally and 24
 characters vertically. In mode 2 the characters are twice as tall so
 the screen holds 12 vertically.

 In BASIC, characters are sent to the screen with the PRINT command.
 Since BASIC uses channel 6 for graphics you must specify channel 6 in
 the command. For example:

 ? #6;"HELLO"

 If you use a comma in place of the semicolon, ten spaces will print
 before the "HELLO"

 You can also use the PLOT and DRAWTO commands. In this case the COLOR
 command determines the character, as well as the color to be
 displayed.

 Data passes through CIO in the following form:

 7 6 5 4 3 2 1 0

 | C | D |

 C determines the color.

 C Default Color Shadow
 Color Register Register

 0 green COLPF1 COLOR1
 1 gold COLPF0 COLOR0
 2 gold COLPF0 COLOR0
 3 green COLPF1 COLOR1
 4 red COLPF3 COLOR3
 5 blue COLPF2 COLOR2
 6 blue COLPF2 COLOR2
 7 red COLPF3 COLOR3

 D is a 5 bit ATASCII code which selects the character to be displayed.
 The database variable CHBAS selects between upper case (CHBAS=$E0

 (224)) and lower case (CHBAS=$E2 (226)).

 GRAPHICS MODES 3 THROUGH 11

 Modes 3 through 8 offer a split screen mode. In modes 9 through 11
 special programming is required for split screens.

 These modes use dot by dot (pixel by pixel) graphics instead of
 character sets. Before explaining how graphics are sent to the screen
 through CIO, I will describe how the data in the display buffer is
 interpreted by the ANTIC chip.

 Mode 8 is the simplest of the graphics modes. Each byte of the
 display buffer controls eight pixels horizontally. The first 40 bytes
 of the display buffer control the first horizontal line of graphics.
 This makes a total of 320 pixels horizontally. If one of the eight
 bits of a byte is a 1 then the pixel it controls is on. If a bit is a
 0 then it's pixel is off. For example, if a particular byte is equal
 to $9B (binary 10011011) then its' part of the screen would look
 like...

 * ** **

 (10011011)

 In reality the pixels are assigned to different color registers. A
 color register is a byte of memory which controls the color of all
 pixels assigned to it. In mode 8, if a bit is = 0 it's pixel is
 assigned to the register called COLBK. If a bit is one, it's pixel is
 assigned to COLPF0. See COLORS below for more information on the
 color registers.

 You may notice a close similarity between mode 0 and mode 8. The
 major difference between these modes is where the dot by dot
 information comes from. In mode 8 this information comes from the
 display buffer. In mode 0 the display buffer contains codes telling
 what characters to display. The actual dot by dot information comes
 for the character set at $E000.

 In mode 7 each pixel is controlled by two bits. Therefore each byte
 only controls four pixels. There are also only 1/4 as many pixels on
 the screen as in mode 8. See mode 3 below for an explanation of how
 the each byte affects the pixels.

 In a graphics mode, when CIO sends a byte of data to the screen
 handler, that byte has information for only one pixel. Do not confuse
 a byte which CIO sends to the screen handler with the bytes in the
 display buffer.

 CIO sends data to or retrieves data from the screen in the following
 forms.

 7 6 5 4 3 2 1 0

 |0 0 0 0 0 0| D | Modes 3,5,7 -- D = color

 |0 0 0 0 0 0 0|D| Modes 4,6,8 -- D = Color

 |0 0 0 0| D | Modes 9,10,11 -- D = data

 Mode 3 uses a screen which is 40 pixels horizontally and 24
 vertically. Each pixel is a square the size of a mode 0 character.
 It requires 273 bytes of RAM where each byte controls 4 pixels. Each
 pair of bits controls which of the four color registers their pixel is
 assigned to.

 display buffer byte for mode 3

 7 6 5 4 3 2 1 0

 | D | D | D | D |

 P1 P2 P3 P4

 Pixel/color register assignments:

 D = 00 COLBK (COLOR4)
 01 COLPF0 (COLOR0)
 10 COLPF1 (COLOR1)
 11 COLPF2 (COLOR2)

 Mode 4 uses a screen of 80 columns by 48 rows. Each pixel is half the
 size of those in mode 3. Mode 4 requires 537 bytes of RAM where each
 byte controls 8 pixels. This mode is very similar to mode 8 except
 there are fewer but larger pixels.

 Mode 5 uses a screen of 80 columns by 48 rows. The pixels are the
 same size as in mode 4. Mode 5 requires 1,017 bytes of RAM where each
 byte controls 4 pixels in the same manner as in mode 3.

 Mode 6 uses a screen of 160 columns by 96 rows. It requires 2,025
 bytes of RAM where each byte controls 8 pixels as in mode 4.

 Mode 7 uses a screen of 160 columns by 96 rows. It requires 3,945
 bytes of RAM where each byte controls 4 pixels as in modes 3 and 5.

 Modes 8 through 11 (and 15 on XL and XE models) each require 7,900

 bytes of RAM and are very similar in display set up. The main
 differences between these modes is the interpretation of data in the
 display buffer.

 Mode 15 (sometimes called mode 7.5) uses a screen of 160 columns by
 192 rows. Each byte controls 4 pixels as in mode 7. The main
 difference between mode 15 and its related modes is bit 0 of each
 instruction byte in the display list (the program which the ANTIC chip
 uses). If this bit is 0 the screen is interpreted as mode 15. If the
 bit is 1 the screen is interpreted as modes 8 through 11.

 Modes 8 through 11 are set up identically in memory, including the
 display list. The only difference is the data in the PRIOR register
 of the GTIA chip. The shadow register for PRIOR is GPRIOR [$026F
 (623)].

 Mode 8 (PRIOR = $00 - $3F (0 - 63)), uses a screen of 320 columns by
 192 rows. Each byte controls 8 pixels as in modes 4 and 6.

 Mode 9 (PRIOR = $40 - $7F (64 - 127)) uses a screen of 80 columns by
 192 rows. Each byte controls 2 pixels. The pixels are all of the
 same color, controlled by COLBK. Each half of a byte in the display
 buffer controls the luminance of the assigned pixel. The format of
 each byte is as follows.

 7 6 5 4 3 2 1 0

 | data | data |

 pixel 1|pixel 2

 Mode 10 (PRIOR = $80 - $BF (128 - 191), is the same as mode 9 except 9
 color luminance combinations are available. The data in each half
 byte chooses one of the 9 color registers for the assigned pixel.

 Mode 11 (PRIOR = $C0 - FF (192 - 255), is the same as mode 9 except
 there is one brightness but 16 colors. The pixel data chooses one of
 the 16 available colors. The luminance is that of the background
 (COLBK).

 USING THE SCREEN HANDLER

 OPENING A CHANNEL TO THE SCREEN HANDLER

 When a channel is opened to the screen handler the following actions
 take place:

 The area of memory to be used for the screen data is cleared.

 A display list (program for the ANTIC chip) is set up for the proper
 graphics mode.

 The top-of-free-memory pointer, MEMTOP [$02E5,2 (741)], is set to

 point to the last free byte before the display list.

 Before opening a channel to the screen handler, the pointer to the
 highest memory address needed by the program, APPMHI [$000E,2 (14)],
 should be properly set. This will prevent the screen handler from
 erasing part of the program when it sets-up the screen data region.

 When the channel is opened, two special options can be sent with the
 direction parameter (ICAX1).

 ICAX1 for screen open

 7 6 5 4 3 2 1 0

 | C S W R |

 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 C 1 = don't clear the screen
 S 1 = split screen
 R 1 = input
 W 1 = output

 Before the open command, the graphics mode number is placed into
 ICAX2.

 ICAX2 for screen open

 7 6 5 4 3 2 1 0

 | : mode |

 mode = $00 through $0B (0 - 11 (0 - 15 on XL/XE))

 To open a channel to the screen in BASIC use the GRAPHICS command.

 BASIC screen open format

 GRAPHICS mode

 For Example:

 GRAPHICS 8

 This will set up a mode 8 graphics screen and open channel 6 to it.
 If the graphics mode is 1 - 8, a split screen will be set up. For
 example, GRAPHICS 8 will set up a mode 8 screen with a four line text
 window at the bottom.

 If 16 is added to the mode number, a full screen will be set-up. For
 example, GRAPHICS 8+16 or GRAPHICS 24 will set up a mode 8 screen,
 with no text window, a full 192 pixels high. If the number 32 is
 added to the mode number, the screen will not clear when the channel
 opens.

 If you want to use a channel other than #6, you will have to use the
 open command. It is used in the following format.

 screen open without GRAPHICS command

 OPEN #channel,direction/special,mode,S:

 For example:

 OPEN #1,8,7,S:

 This will open channel 1 to a mode 7 screen for output only. For use
 of special parameters, see ICAX1 above.

 USING AN OPEN CHANNEL TO THE SCREEN

 Once a channel is opened to the screen it is used like any other input
 or output device. In other words, data is placed on the screen by the
 PRINT and PUT commands. Data is retrieved from the screen with the
 INPUT and GET commands. The part of the screen which the data will be
 put in or taken from is determined by the X,Y coordinants in the
 database variables COLCRS [$0055,2 (85)] and ROWCRS [$0054 (84)].
 What appears on the screen depends on what graphics mode the computer
 is in.

 Before sending data to the screen in BASIC, a color register must be
 assigned to the data. Once a point is plotted on the screen, it's
 color will be determined by the color register it was assigned to.

 To assign a color to a ploted point, the COLOR command us used as
 follows.

 COLOR command format

 COLOR register

 For example,

 COLOR 1

 After using the above command, all points plotted will be controlled
 by color register 1. To change color registers, use the COLOR command
 again.

 In assembly language, the color is determined by the data sent to the
 screen. See the above section on graphics modes for color
 information.

 In BASIC the PLOT command is used to put data on the screen. The PLOT

 command is used as follows.

 The BASIC PLOT command

 PLOT x,y

 x and y are the horizontal and vertical coordinates for the plotted
 point.

 In modes 3 through 11 a single point will be plotted. In modes 1 and
 2 a text character will be printed on the screen by the PLOT command.

 The PRINT and PUT commands can also be used in basic. What appears on
 the screen depends on the graphics mode.

 In modes 1 and 2 the ATASCII characters sent to the screen will be
 printed just as in mode 0. See the paragraph on modes 1 and 2 above
 for more information. In the other modes what appears depends on how
 the ANTIC chip interprets the data bytes sent to the screen. For
 example, in mode 8, even numbered characters will be single pixels in
 color 1. Odd numbered characters will be in color 0 (background).

 There are two special commands for the screen handler, DRAW and FILL

 DRAW (ICCOM = $11 (17))

 The draw command works exactly like the plot command except a straight
 line is drawn from the previous pixel to the new one. In BASIC it is
 used in the following format.

 the BASIC DRAW command

 DRAWTO x,y

 FILL (ICCOM = $12 (18))

 Fill works like draw except the area to the right of the drawn line
 will be filled with the color in FILDAT [$02FD (765)]. The fill
 command expects to find a boundary to the right. If no boundary is
 found, the entire horizontal screen between the ends of the line is
 filled.

 To use the fill command in BASIC the XIO command must be used in the
 following format.

 POSITION x,y
 XIO 18 #6,0,0,"E:"

 Note that the cursor is first moved by the POSITION command. Below is
 an example of how to prepare for and use the fill command.

 using the fill command

 2nd DRAWTO .____. DRAWTO here
 | |
 | |
 | |
 fill to here ! ! PLOT here

 This will draw and fill a box on the screen.

 THE COLOR REGISTERS

 There are nine bytes of memory which control the colors on the screen.
 These bytes are called color registers. The color registers have the
 following names and relationships.

 Color registers and relationships

 Register Register modes

 name address
 0 & 8 1 & 2 3 5 7 4 & 6 9 & 11
 10

 HEX decimal COLOR numbers

 PCOLR0 $02C0 704
 0
 PCOLR1 $02C1 705
 1
 PCOLR2 $02C2 706
 2
 PCOLR3 $02C3 707
 3
 COLOR0 $02C4 708 0 - 63 1 1
 4
 COLOR1 $02C5 709 1 - 255 64 -127 2
 5
 COLOR2 $02C6 710 0 128-191 3
 6
 COLOR3 $02C7 711 192-255
 7
 COLOR4 $02C8 712 border backgnd 0 backgnd backgnd
 8

 The color numbers are in decimal. These are actually shadow
 registers. See the O.S. equates below for relationships. In modes 0
 - 3 the COLOR number actually determines the character printed

 The register to which a pixel/character is assigned to is determined
 by the data byte sent to the screen through CIO.

 The data in the color registers in in the following format.

 Color register data format

 7 6 5 4 3 2 1 0

 | color |bright |

 color = one of 16 possible colors
 bright = one of 8 possible brightnesses
 (even numbers, 0 - E)

 In basic, the COLOR command is used to assign color registers. The
 corresponding registers depends on the graphics mode. For example,
 COLOR 0 is COLOR2 in mode 8. In most other modes COLOR 0 is COLOR4.
 See the above chart for the register relationships.

 To change the contents of the color registers in BASIC, the SETCOLOR
 command is used. In all modes except mode 10, the SETCOLOR command
 refers to the registers COLOR0 to COLOR4.

 SETCOLOR/register relationships

 SETCOLOR 0 COLPF0 (COLOR0)
 SETCOLOR 1 COLPF1 (COLOR1)
 SETCOLOR 2 COLPF2 (COLOR2)
 SETCOLOR 3 COLPF3 (COLOR3)
 SETCOLOR 4 COLBK (COLOR4)

 The format for the SETCOLOR command is...

 SETCOLOR command format

 SETCOLOR register,hue,brightness

 register = 0 - 4 (0 - 8 in mode 10)
 hue = 0 - 15 (16 colors)
 brightness = 0 - 16 (even numbers only (8 brightnesses)

 The following chart gives the colors represented by the hue number.

 colors represented by hue numbers

 0 grey 8 blue
 1 gold 9 cyan
 2 gold-orange 10 blue-green
 3 red-orange 11 blue-green
 4 orange 12 green
 5 magenta 13 yellow-green
 6 purple-blue 14 yellow
 7 blue 15 yellow-red

 The attract mode

 If a key is not pressed for more than 9 minutes the computer will
 enter the attract mode. This mode is used to prevent burning of the
 TV phosphors by lowering the brightness and constantly changing the
 colors. The attract mode timer, ATRACT [$004D (77)], is set to 254
 ($FE) when the the attract mode is entered. To force the computer out
 of the attract mode, poke a number less than 127 into ATRACT.

 Useful database variables and OS equates

 APPMHI $000E,2 (14): lower limit for screen region
 ATRACT $004D (77): attract mode timer and flag
 LMARGN $0052 (82): left margin
 RMARGN $0053 (83): right margin
 ROWCRS $0054 (84): horizontal cursor position
 COLCRS $0055,2 (85): vertical cursor position
 DINDEX $0057 (87): current graphics mode
 SAVMSC $0058,2 (88): starting address of display buffer
 OLDROW $005A (90): previous cursor position
 OLDCOL $005B,2 (91): " " "
 OLDCHR $005D (93): character currently at the text cursor
 OLDADR $005E,2 (94): memory address of cursor
 RAMTOP $006A (106): end-of-RAM + 1 (MSB only)
 SDLSTL $0230,2 (560): shadow register of display list address
 TXTROW $0290 (656): text window cursor position
 TXTCOL $0291,2 (657): " " " "
 TXTMSC $0294,2 (660): starting address of text window data buffer
 RAMSIZ $02E4 (740): permanent end-of-RAM + 1 (MSB only)
 CRSINH $02F0 (752): cursor inhibit, 1 = no cursor
 FILDAT $02FD (765): color data for fill
 DSPFLG $02FE (766): if >0 screen control codes are displayed as
 ATASCII characters (EOL is uneffected)
 SSFLAG $02FF (767): > 0 = stop screen print
 COLPM0 $D012 (53266): actual color registers
 COLPM1 $D013 (53267): loaded from shadow
 COLPM2 $D014 (53268): registers during
 COLPM3 $D015 (53269): vertical blank
 COLPF0 $D016 (53270):
 COLPF1 $D017 (53271): see above
 COLPF2 $D018 (53272): for use
 COLPF3 $D019 (53273):
 COLBK $D020 (53274):

 OS shadow registers

 PCOLR0 $02C0 (704): COLPM0
 PCOLR1 $02C1 (705): COLPM1
 PCOLR2 $02C2 (706): COLPM2
 PCOLR3 $02C3 (707): COLPM3
 COLOR0 $02C4 (708): COLPF0
 COLOR1 $02C5 (709): COLPF1

 COLOR2 $02C6 (710): COLPF2
 COLOR3 $02C7 (711): COLPF3
 COLOR4 $02C8 (712): COLBK

 CHAPTER 9

 THE RESIDENT DISK HANDLER

 The resident disk handler is separate from DOS and is part of the
 permanent operating system ROM. The disk handler does not use CIO.

 The resident disk handler works with one sector at a time. It is used
 by setting the drive number, sector number, and operation code in the
 device control block. The program then jumps (JSR) to the handler
 entry vector, DSKINV [$E453 (58451)].

 Device control block (for resident disk handler)

 DDEVIC [$0300 (768)]

 Serial bus I.D. Set by handler

 DUNIT [$0301 (769)]

 Drive number

 DCOMND [$0302 (770)]

 Command byte

 DSTATS [$0303 (771)]

 status byte

 DBUFLO [$0304 (772)]
 DBUFHI [$0305 (773)]

 Pointer to 128 byte memory block for data storage.

 DTIMLO [$0306 (774)]

 Timeout value (response time limit) in seconds

 DBYTLO [$0308 (776)]
 DBYTHI [$0309 (777)]

 number of bytes transferred, set by handler

 DAUX1 [$030A (778)]
 DAUX2 [$030B (779)]

 sector number

 DISK HANDLER COMMANDS

 GET SECTOR

 Before the JSR to DSKINV is made the following parameters are set.

 GET SECTOR parameters

 DCOMND = $52 (82)
 DUNIT = (1 - 4)
 DBUFHI
 and
 DBUFLO = address of 128 byte buffer
 DAUX1
 and
 DAUX2 = Sector number (LSB,MSB)

 This operation will read the specified sector and put the data into
 the specified buffer.

 PUT SECTOR

 PUT SECTOR is used the same as GET SECTOR except for DCOMND.

 PUT SECTOR parameters

 DCOMND = $50 (80)

 This operation sends the data in the specified buffer to the specified
 disk sector.

 PUT SECTOR WITH VERIFY

 PUT SECTOR WITH VERIFY is used the same as PUT SECTOR except for
 DCOMND.

 PUT SECTOR WITH VERIFY parameters

 DCOMND = $57 (87)

 This operation sends the data in the specified buffer to the specified
 disk sector then checks for errors.

 GET STATUS

 Only the DUNIT and DCOMND need to be set

 GET STATUS parameters

 DCOMND = $53 (83)
 DUNIT = (1 - 4)

 The status information will be put in three bytes starting at DVSTAT
 [$02EA (746)].

 Status format

 7 6 5 4 3 2 1 0

 DVSTAT + 0 | command stat |

 + 1 | hardware stat |

 + 2 | timeout value |

 The command status byte gives the following information.

 Bit

 0 1 = invalid command frame received
 1 1 = invalid data frame received
 2 1 = unsuccessful PUT operation
 3 1 = disk is write protected
 4 1 = active/standby

 The hardware status byte contains the status register of the ISN1771-1
 disk controller chip.

 The timeout byte contains the maximum allowable response time for the
 drive in seconds.

 FORMAT DISK

 The handler will format then verify the the disk. The numbers of all
 bad sectors (up to 63) will be put into the specified buffer followed
 by two bytes of $FF.

 The following parameters are set before the call.

 FORMAT parameters

 DCOMND = $21 (33)
 DUNIT = (1 - 4)
 DBUFLO
 and
 DBUFHI = address of bad sector list (buffer)

 After the operation the status byte is set. Also, DBYTLO and DBYTHI
 will contain the number of bytes of bad sector information (not
 including the two $FF bytes).

 Useful data base variables and OS equates

 DVSTAT $02EA,3 (746): device status block, 3 bytes
 DDEVIC $0300 (768): serial bus I.D.

 DUNIT $0301 (769): device number
 DCOMND $0302 (770): command byte
 DSTATS $0303 (771): status byte
 DBUFLO $0304 (772): data buffer
 DBUFHI $0305 (773): pointer
 DTIMLO $0306 (774): timeout value
 DBYTLO $0308 (776): number of bytes transfered
 DBYTHI $0309 (777):
 DAUX1 $030A (778): sector
 DAUX2 $030B (779): number
 DSKINV $E453 (58451): disk handler entry vector

 CHAPTER 10

 SYSTEM INTERRUPTS

 There are four types of interrupts which can occur with the 6502
 microprocessor:

 6502 interrupts

 1. chip reset
 2. IRQ, interrupt request (maskable)
 3. MNI (non-maskable interrupt)
 4. software interrupt (BRK instruction)

 CHIP RESET

 On the 400/800 the chip reset occurs only upon power-up and causes the
 computer to do a cold start. On later models, pressing [SYSTEM RESET]
 will cause a chip reset but the computer then does a warm start. On
 the 400/800, the [SYSTEM RESET] key generates a NMI interrupt.

 COLD START

 This is a synopsis of the cold start routine.

 1
 The warm start flag [$0008] is set to 0 (false)

 2
 If a cartridge slot contains a diagnostic cartridge, control is handed
 to the cartridge.

 3
 The end of RAM is determined by trying to complement the first byte of
 each 4K block of memory.

 4
 Hardware registers at $D000 - $D4FF (except $D100 - $D1FF) are
 cleared.

 5
 RAM is cleared from $0008 to the top of ram.

 6
 The user program jump vector, DOSVEC [$000A] is set to point to the
 black board mode (Atari logo display mode in XL/XE models).

 7
 The screen margins are set to 2 and 39

 8
 Interrupt vectors are initialized.

 9
 Bottom of free RAM pointer, MEMLO [$02E7], is set to point to $0700.

 10
 Resident CIO handlers are initialized.

 11
 If the [START] key is pressed the cassette boot request flag, CKEY
 [$004A], is set.

 12
 The CIO device table is initialized.

 13
 If a cartridge is present it is initialized.

 14
 Channel 0 is opened to the screen editor. The top-of-free-RAM
 pointer, MEMTOP [$02E5], is set to point below the screen region. The
 computer then waits for the screen to be established before
 continuing.

 15
 If the cassette boot flag is set the cassette is booted.

 16
 If there is no cartridge present or a cartridge doesn't prevent it,
 the disk is booted.

 17
 The cold start flag is reset.

 18
 If there is a cartridge present, the computer jumps to the cartridge's
 run vector.

 19
 If there is no cartridge present the computer jumps through the vector
 DOSVEC [$000A (10)]. DOSVEC will point to either a booted program,
 the memo pad routine (400/800) or the logo display routine (XL/XE).

 WARM START

 1
 The warm start flag is set to $7F (true).

 2
 cold start steps 2 - 4 are executed.

 3
 RAM is cleared from $0010 - $007F and $0200 - $03FF.

 4
 Cold start steps 7 - 14 are executed.

 5
 If cassette booted software is present the computer JSRs through
 CASINI [$0002].

 6
 If disk booted software is present the computer JSRs through DOSINI
 [$000C (12)].

 The difference between cold start and warm start is the condition of
 the warm start flag, WARMST, [$0008]. If this flag is 0 a complete
 cold start is executed. If the flag is anything other than 0 then
 only the warm start part of the warm start/cold start code is
 executed.

 NON-MASKABLE INTERRUPTS (NMI)

 NMI interrupts are generated by the following conditions:

 1. Display list interrupt, generated by the ANTIC chip.
 2. TV vertical blank interrupt, generated by the ANTIC
 chip.
 3. [SYSTEM RESET] key (400/800).

 When an NMI interrupt occurs, the hardware register NMIST [$D40F] is
 examined to determine what type of interrupt occurred. The computer
 is then directed through the proper ram vector to service the
 interrupt.

 DISPLAY LIST INTERRUPTS (DLIs)

 The computer makes no use of DLIs. The ram vector points to an RTI
 instruction.

 VERTICAL BLANK INTERRUPTS (VBIs)

 There are two stages to the VBI service routine. The second stage is
 only done if a critical function was not interrupted.

 Stage 1 (VBI)

 The real time clock, RTCLOK [$0012 - $0014], is incremented.

 The attract mode variables are processed.

 System timer 1 is decremented. If it goes to zero the computer JSRs
 through system time-out vector 1.

 Stage 2 (VBI)

 The hardware registers are loaded with the data in their shadow
 registers.

 System timer 2 is decremented. If it goes to zero the computer JSRs
 through the system time-out vector 2.

 System timers 3, 4, and 5 are decremented. If a timer goes to zero
 the computer sets system timer flags 3, 4, and/or 5.

 If auto-repeat is active, the auto-repeat process is done.

 The keyboard debounce timer is decremented if not 0.

 Information at the controller port registers is read, processed and
 placed in the proper shadow registers.

 [SYSTEM RESET] INTERRUPT

 If a [SYSTEM RESET] interrupt is generated on the 400/800 the computer
 jumps to the warm start routine.

 INTERRUPT REQUESTS (maskable interrupts (IRQs))

 When an IRQ interrupt occurs the hardware register IRQST [$D20E], the
 PIA status registers, PACTL [$D302] and PBCTL [$D303] are examined to
 determine what caused the interrupt.

 For each interrupt, the 6502 accumulator is pushed to the stack. The
 computer is then directed to the proper ram vector to service the
 interrupt.

 SOFTWARE INTERRUPT (BRK instruction)

 The operating system doesn't use software interrupts. The software
 interrupt vector points to a PLA followed by an RTI.

 Interrupt vectors

 Label address type function

 VDSLST $0200 NMI DLI Points to an RTI
 VVBLKI $0222 NMI stage 1 VBI
 VVBLKD $0224 NMI return-from-interrupt routine
 CDTMA1 $0226 NMI time-out 1 (used by SIO)
 CDTMA2 $0228 NMI time-out 2 (not used by OS)
 VPRCED $0202 IRQ not used (points to PLA,RTI)
 VINTER $0204 IRQ not used (PLA,RTI)
 VKEYBD $0208 IRQ keyboard interrupt
 VSERIN $020A IRQ used by Serial I/O routine
 VSEROR $020C IRQ used by SIO
 VSEROC $020E IRQ used by SIO
 VTIMR1 $0210 IRQ not used by OS (PLA,RTI)

 VTIMR2 $0212 IRQ not used by OS (PLA,RTI)
 VTIMR4 $0214 IRQ ?
 VIMIRQ $0216 IRQ main IRQ code
 VBREAK $0206 BRK unused by OS (PLA,RTI)

 SYSTEM TIMERS

 The following timers are updated during vertical blank (VBI) as noted
 above. If a timer is decremented to 0 the computer jumps through it's
 associated vector or sets it's associated flag.

 Label address flag/vector

 RTCLOK $0012 3 byte clock ($0012 = MSB)
 CDTMV1 $0218 CDTMA1 $0226 vector (SIO time-out)
 CDTMV2 $021A CDTMA2 $0228 vector
 CDTMV3 $021C CDTMF3 $022A flag
 CDTMV4 $021E CDTMF4 $022C flag
 CDTMV5 $0220 CDTMF5 $022E flag

 HARDWARE INTERRUPT CONTROL

 There are two registers on the antic chip which control interrupts.
 These registers can be used to disable interrupts if necessary. There
 are also two associated interrupt status registers.

 The IRQ enable and status registers use the same address. The result
 is that reading the register does not reveal the enabled interrupts
 but the interrupts pending. IRQ interrupt enable data should usually
 be written to the OS shadow first. Reading the OS shadow tells which
 interrupts are enabled.

 Non maskable interrupt enable

 NMIEN $D40E

 7 6 5 4 3 2 1 0

 | | | not used |

 bit 7 1 = DLI enabled
 6 1 = VBI enabled

 Non maskable interrupt status

 NMIST $D40F

 7 6 5 4 3 2 1 0

 | | | | not used|

 bit 7 1 = DLI pending
 6 1 = VBI pending
 5 1 = [SYSTEM RESET] key pending

 Interrupt request enable

 IRQEN $D20E

 7 6 5 4 3 2 1 0

 | | | | | | | | |

 bit 7 1 = [BREAK] key interrupt enable
 6 1 = keyboard interrupt enable
 5 1 = serial input interrupt enable
 4 1 = serial output interrupt enable
 3 1 = serial output-finished interrupt enable
 2 1 = timer 4 interrupt enable
 1 1 = timer 2 interrupt enable
 0 1 = timer 1 interrupt enable

 IRQEN has a shadow register, POKMSK [$0010 (A)].

 Interrupt request status

 IRQST $D20E

 7 6 5 4 3 2 1 0

 | | | | | | | | |

 bit 7 1 = [BREAK] key interrupt pending
 6 1 = keyboard interrupt pending
 5 1 = serial input interrupt pending
 4 1 = serial output interrupt
 pending
 3 1 = serial output-finished interrupt pending
 2 1 = timer 4 interrupt pending
 1 1 = timer 2 interrupt pending
 0 1 = timer 1 interrupt pending

 WAIT FOR HORIZONTAL SYNC

 Writing any number to WSYNC [$D40A (54282)] will cause the computer to

 stop and wait for the next TV horizontal sync.

 It is wise to use DLIs one TV line before needed then writing to
 WSYNC. This will keep other interrupts from causing DLIs to be
 serviced late. This can cause a DLI to change something in the middle
 of a scan line.

 Useful database variables and OS equates

 POKMSK $0010 (16): IRQEN shadow
 IRQEN $D20E (53774): enables IRQs when written to
 IRQST $D20E (53774); gives IRQs waiting when read
 PACTL $D302 (54018): bit 7 (read) peripheral A interrupt status
 bit 0 (write) peripheral A interrupt enable
 PBCTL $D303 (54019): bit 7 (read) peripheral B interrupt status
 bit 0 (write) peripheral B interrupt enable
 WSYNC $D40A (54282): wait for horizontal sync
 NMIEN $D40E (54286): NMI enable
 NMIST $D40F (54287): NMI status

 CHAPTER 11

 THE FLOATING POINT ARITHMETIC PACKAGE

 The routines which do floating point arithmetic are a part of the
 operating system ROM. The Atari computer uses the 6502's decimal math
 mode. This mode uses numbers represented in packed Binary Coded
 Decimal (BCD). This means that each byte of a floating point number
 holds two decimal digits. The actual method of representing a full
 number is complicated and probably not very important to a programmer.
 However, for those with the knowledge to use it, the format is given
 below.

 Floating point number representation

 byte 0 xx excess 64 exponent + sign
 xx \
 xx \
 xx > 10 BCD digits
 xx /
 byte 7 xx /

 The decimal point is shifted to left of the MSD and the exponent is
 adjusted accordingly. Therefore, the decimal point doesn't need to be
 represented.

 For programming purposes, floating point numbers can be in ASCII code.
 It takes up to 14 bytes to store a floating point number in this
 manner. The floating point package has a routine to convert numbers
 between ASCII and floating point.

 USE OF THE FLOATING POINT PACKAGE

 The floating point package has several routines to convert between
 ASCII and FP and to do the arithmetic functions. These are the
 important data base variables.

 Floating point data base variables

 FR0 $00D4,6 (212): 6 byte buffer for floating point number
 FR1 $00E0,6 (224): 6 byte buffer for floating point number
 CIX $00F2 (242): index for INBUFF address
 INBUFF $00F3,2 (243): 2 byte pointer to ASCII floating point number
 FLPTR $00FC,2 (252): 2 byte pointer to user buffer for floating
 point number
 LBUFF $0580,? (1408): result buffer for FASC routine

 MAKING THE CALL

 To do a floating point function, first set the proper pointers and JSR

 to the operation entry point. Below is a list of the entry points and
 parameters.

 ASCII to floating point

 Converts ASCII representation pointed to by INBUFF to FP in FR0.

 AFP = $D800

 INBUFF = address of ASCII number

 CIX = buffer offset if any

 JSR AFP

 FLOATING POINT TO ASCII

 Converts floating Point number in FR0 to ASCII. The result will be
 in LBUFF. INBUFF will point to the ASCII number which will have the
 bit 7 of the last byte set to 1.

 FASC = $D8E6

 JSR FASC

 INTEGER TO FLOATING POINT CONVERSION.

 Converts a 2 byte unsigned integer (0 to 65535) in FR0 to floating
 point in FR0.

 IFP = $D9AA

 JSR IFP

 FLOATING POINT TO INTEGER CONVERSION.

 Converts floating point number in FR0 to 2 byte integer in FR0.

 FPI = $D9D2

 JSR FPI
 BCS overflow

 ADDITION

 Adds floating point numbers in FR0 and FR1 with result in FR0.

 FADD = $DA66

 JSR FADD
 BCS out of range

 SUBTRACTION

 subtracts FR1 from FR0 with the result in FR0.

 FSUB = $DA60

 JSR FSUB
 BCS out of range

 MULTIPLICATION

 Multiplies FR0 by FR1 with the result in FR0.

 FMUL = $DADB

 JSR FMUL
 BCS out of range

 DIVISION

 Divides FR0 by FR1 with result in FR0.

 FDIV = $DB28

 JSR FDIV
 BCS out of range or divisor is 0

 LOGARITHMS

 Puts logarithm of FR0 in FR0

 LOG = $DECD
 LOG10 = $DED1

 JSR LOG ;for natural log.

 or

 JSR LOG10 ;for base 10 log.
 BCS negative number or overflow

 EXPONENTIATION

 Put exponentiation of FR0 in FR0

 EXP = $DDC0

 EXP10 = $DDCC

 JSR EXP ;for e ** Z

 or

 JSR EXP10 ;for 10 ** Z

 POLYNOMIAL EVALUATION

 Puts the result of an n degree polynomial evaluation of FR0 in FR0.

 PLYEVL = $DD40

 LDX LSB of pointer to list of floating point
 coefficients, ordered high to low.
 LDY MSB of above
 LDA number of coefficients in list

 JSR PLYEVL
 BCS overflow

 CLEAR FR0

 Sets FR0 to all zeroes

 ZFR0 = $DA44

 JSR ZFR0

 CLEAR ZERO PAGE FLOATING POINT NUMBER

 Clears user floating point number in page zero.

 ZF1 = $DA46

 LDX address of zero page FP buffer

 JSR ZF1

 LOAD FR0 WITH FLOATING POINT NUMBER

 Loads FR0 with user FP number in buffer pointed to by 6502 X and Y
 registers or by FLPTR. After either operation below, FLPTR will point
 to the user FP buffer.

 FLD0R = $DD89

 LDX lsb of pointer
 LDY msb

 JSR FLD0R

 or

 FLD0P = $DD8D

 FLPTR = address of FP number

 JSR FLD0P

 LOAD FR1 WITH FLOATING POINT NUMBER

 Loads FR1 with user FP number in buffer pointed to by 6502 X and Y
 registers or by FLPTR. After either operation below, FLPTR will point
 to the user FP buffer.

 FLD1R = $DD98

 LDX lsb of pointer
 LDY msb

 JSR FLD1R

 or

 FLD1P = $DD9C

 FLPTR = address of FP number

 JSR FLD1P

 STORE FR0 IN USER BUFFER

 stores the contents of FR0 in user FP buffer pointed to by 6502 X and
 Y registers or by FLPTR. After either operation below, FLPTR will
 point to the user FP buffer.

 FST0R = $DDA7

 LDX lsb of pointer
 LDY msb

 JSR FST0R

 or

 FST0P = $DDAB

 FLPTR = address of FP number

 JSR FST0P

 MOVE FR0 TO FR1

 Moves the contents of FR0 to FR1

 FMOVE = $DDB6

 JSR FMOVE

 The usual use sequence of the floating point package might be to:

 load FR0 and FR1 with FP numbes from user specified buffers

 do the math

 then store FR0 in a user buffer.

 An alternative might be to:

 convert an ASCII representation to FP (the result is automatically in
 FR0).

 move FR0 to FR1.

 Convert the second ASCII number.

 Do the math.

 Convert FR0 back to ASCII.

 Store the number back into a user buffer.

 The floating point package uses the following blocks of RAM.

 RAM used by floating point package

 $00D4 - $00FF
 $057E - $05FF

 If the floating point package is not used the above ram is free.

 Useful data base variables and OS equates

 FR0 $00D4,6 (212): system FP buffer
 FR1 $00E0,6 (224): system FP buffer
 CIX $00F2 (242): INBUFF index
 INBUFF $00F3,2 (243): pointer to ASCII FP buffer
 FLPTR $00FC,2 (252): pointer to user FP buffer
 LBUFF $0580 (1408): result buffer for FP to ASCII
 AFP $D800 (55296): ASCII to FP
 FASC $D8E6 (55526): FP to ASCII
 IFP $D9AA (55722): integer to FP
 FPI $D9D2 (55762): FP to integer
 ZFR0 $DA44 (55876): clear FR0
 ZF1 $DA46 (55878): clear zero page FP buffer
 FSUB $DA60 (55904): FR0 - FR1
 FADD $DA66 (55910): FR0 + FR1
 FMUL $DADB (56027): FR0 * FR1
 FDIV $DB28 (56104): FR0 / FR1
 FLD0R $DD89 (56713): load FR0 by X,Y pointer
 FLD0P $DD8D (56717): load FR0 by FLPTR pointer
 FLD1R $DD98 (56728): load FR1 by X,Y pointer
 FLD1P $DD9C (56732): load FR1 by FLPTR pointer
 FST0R $DDA7 (56743): store FR0 at buffer by X,Y pointer
 FST1P $DDAB (56747): store FR0 at buffer by FLPTR pointer
 FMOVE $DDB6 (56758): move FR0 to FR1
 EXP $DDC0 (56768): e exponentiation
 EXP10 $DDCC (56780): base 10 exponentiation
 PLYEVL $DD40 (56640): polynomial evaluation

 LOG $DECD (57037): natural log of FR0
 LOG10 $DED1 (57041): base 10 log of FR0

 CHAPTER 12

 Boot software formats

 There are three ways which programs may be booted (loaded
 automatically upon power-up):

 From the disk drive

 From the cassette recorder

 From a ROM cartridge

 DISK BOOTED SOFTWARE

 The disk drive is the primary source for programs (other than the
 BASIC interpreter in the computer ROM). A program booted from disk
 must be a machine language program. Secondly, the program is arranged
 on disk in a different manner from the DOS files.

 When the computer is first turned on, it will attempt to read a
 program starting at sector one in disk drive one. The exceptions are,
 if a cartridge prevents the disk boot process or the [START] key is
 pressed. The program is expected to use all 128 bytes of each
 sector.

 FORMAT OF A DISK BOOTED PROGRAM

 A disk booted program begins at sector one on the disk and continues
 in sequence. The first six bytes of the first sector contain program
 information. The rest of the bytes contain the program itself.

 Disk boot program header

 1st byte $00 flags, stored in DFLAGS [$0240]
 $xx number of sectors used by program
 $xx address to start load
 $xx
 $xx initialization address
 6th byte $xx
 7th byte $xx start of program

 The flags byte is usually unused and should be zero.

 The load address is stored in BOOTAD [$0242,2 (578)].

 The initialization address is stored in DOSINI [$000C,2 (12)].

 After the program is completely loaded the computer will JSR to the
 address stored in DOSINI for initialization. It will then jump to the
 address stored in DOSVEC to run the program.

 The initialization part of the program should set the
 bottom-of-free-RAM pointer, MEMLO [$02E7,2 (743)], to point to the end
 of the program + 1. This will protect the program from the computer
 and other programs. The top-of-user-RAM pointer, APPMHI [$000E,2
 (14)], is also usually set to point to the same address. This will
 protect the program from the video hardware. It must also set DOSVEC
 [$000A,2 (10)] to actually point to the run address of the program.
 The initialization should of course end with and RTS. With DOSINI and
 DOSVEC properly set, the program will restart up pressing the [SYSTEM
 RESET] key.

 Rmember that the load address of the program should be six bytes
 before where you want the program to reside in memory. The six byte
 header will load at the specified start address followed by the
 program.

 CASSETTE BOOTED SOFTWARE

 The cassette boot process is nearly identical to the disk boot
 process. The processes are so similar that cassette boot programs can
 usually be transferred directly to disk and vice-versa. The two
 differences are:

 The cassette is booted instead of the disk if the [START] key is
 pressed when the power is turned on.

 A bug in early operating systems requires the booted program to turn
 off the cassette motor with the following command.

 LDA #$3C
 STA PACTL [$D302]

 CARTRIDGE BOOTED SOFTWARE

 The Atari 800 has two cartridge slots. All other models have only
 one. The second cartridge slot, slot B on the 800, resides from $8000
 to $9FFF. The first slot, slot A, resides from $A000 to BFFF. If a
 cartridge is inserted in a slot it will disable any RAM in the same
 area.

 Slot A, which is present in all models, can reside at the entire 16K
 used by both cartridges in the 800 ($8000 to $BFFF).

 Cartridges use the last six bytes for boot information. In cartridge
 A these bytes are from $BFFA to $BFFF. In cartridge B they are from
 $9FFA to 9FFF.

 last six bytes of a cartridge

 $9FFA or $BFFA xx start address
 xx
 00
 xx flag byte
 xx init address
 $9FFF or $BFFF xx

 Flag byte

 bit 0 1 = allow disk boot
 bit 2 0 = do not start cartridge after init
 bit 7 1 = cartridge takes control before OS is
 initialized

 The initialization process for the cartridge should be similar to that
 for disk and cassette. A minimum of an RTS instruction is required.

 The third byte of the cartridge tailer is used by the OS to check for
 the presence of a cartridge. This byte must be zero.

 A 16K cartridge will use both cartridge areas and the cartridge B
 tailer area can be used for program code.

 THE CARTRIDGE HARDWARE

 Most cartridges consist of two ROM chips on a single circuit board.
 Moreover, both chip sockets have identical pin assignments. In other
 words, the chips can be switched to opposite sockets and the
 cartridge will still work. The difference is in the chips themselves.
 On one chip, the A12 pin acts as an active-low chip select. On the
 other the A12 pin acts as an active-high chip select. Therefore the
 state of the A12 pin selects between the two chips.

 Cartridge slot pin assignments

 BACK

 111111
 543210987654321

 SRPNMLKJHFEDCBA

 FRONT

 1 1 = 16K A A13 (16K only)
 2 A3 B GND
 3 A2 C A4
 4 A1 D A5
 5 A0 E A6
 6 D4 F A7
 7 D5 H A8
 8 D8 J A9 __
 9 D1 K A12 (CS)/(CS)
 10 D0 L D3
 11 D6 __ M D7
 12 (CS) N A11
 13 +Vcc P A10
 14 +Vcc R NC
 15 NC S NC

 The BASIC interpreter resides in the memory used by cartridge A. In
 400, 800 and 1200XL models, a BASIC cartridge is required to run BASIC
 programs. On other XL and XE models, inserting a cartridge into the
 slot or pressing the [OPTION] key upon power-up will disable the
 internal BASIC ROM. If BASIC is disabled without inserting another
 cartridge, the area from $A000 to $BFFF will contain RAM.

 Useful data base variables and OS equates

 APPMHI $000E,2 (14): low limit of screen region
 DOSVEC $000A,2 (10): run and program reset vector
 DOSINI $000C,2 (12): init and reset init
 CARTB $8000 (32768): start of cartridge B
 CARTA $A000 (40960): start of cartridge A
 PACTL $D302 (54018): port A control register Bit 3
 controls the cassette motor

 CHAPTER 13

 THE SERIAL INPUT/OUTPUT INTERFACE (SIO)

 Most input and output with the Atari computer passes through the
 serial I/O bus. The SIO interface is rather complicated but you are
 unlikely to need to use it directly. CIO usually handles SIO for you.
 However, if you want to design your own I/O device and it's associated
 handler, you need to know how to use the SIO.

 SIO transfers data at a rate of 19,200 baud on separate input and
 output lines. The data is sent one byte at a time, LSB first, in an
 asynchronous format. There are also clock-in and clock-out lines.
 There is a signal on the clock-out line but it is not used by any
 present devices. The clock-in line is available for synchronous
 transfer but is not used by the OS. The signal on the clock-out line
 goes high at the leading edge of each bit and goes low in the middle
 of each bit.

 One byte of SIO data

 +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
 | | | | | | | | | | | | | | | | clock
 -------------+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +------

 ---------+ +---+ +-------+ +--------
 | 0 | 1 | 0 | 1 1 | 0 0 | 1 data
 +-------+ +---+ +-------+

 | |

 start bit stop bit

 The SIO interface is used much like the resident disk handler. In
 fact, it uses the same device control block as the resident disk
 handler. After the control block parameters are set, a JSR is made to
 the SIO entry vector, SIOV, at $E459 (58457).

 Device control block (for SIO)

 DDEVIC [$0300 (768)]

 Serial bus I.D. Set by handler or program.

 DUNIT [$0301 (769)]

 Device number if more than one.

 DCOMND [$0302 (770)]

 Device command byte.

 DSTATS [$0303 (771)]

 Before the SIO call, this byte tells whether the operation is read,
 write or that there is no data transfer associated with the command.
 After the call this byte will hold the status (error/no error code) of
 the operation.

 DSTATS format before command

 7 6 5 4 3 2 1 0

 |W|R| not used |

 If both W and R are 0, there is no data transfer.

 DBUFLO [$0304 (772)]
 DBUFHI [$0305 (773)]

 Points to the data buffer for either input or output.

 DTIMLO [$0306 (774)]

 Timeout value (response time limit) in 64/60ths of a second to be set
 by handler or program.

 DBYTLO [$0308 (776)]
 DBYTHI [$0309 (777)]

 Number of bytes to be transferred, set by handler or program. This
 parameter is not required if the DSTATS specifies no data transfer.

 DAUX1 [$030A (778)]
 DAUX2 [$030B (779)]

 These parameters are sent to the device as part of the command frame.

 USING THE SIO INTERFACE

 All commands on the serial bus must originate from the computer. The
 peripherals will present data on the bus only when commanded to do
 so.

 Any operation on the serial bus begins with a five byte command frame.

 While the command frame is being sent, the command line of the serial
 connector is 0.

 Command frame format

 $xx DDEVIC
 $xx DCOMND
 $xx DAUX1
 $xx DAUX2
 $xx checksum

 The first four bytes of the command frame come from the device control
 block. the checksum is the sum of the other four bytes with the carry
 added back after each addition.

 If both R and W of the DSTATS are 0, no data is sent to, or expected
 from the peripheral, after a command frame is sent. However, the
 device is usually expected to send an ACK byte ($41) after the command
 frame is sent. If the command frame is invalid, an NAK byte ($4E)
 should be sent.

 If the operation is output (W = 1) the computer will send a data frame
 after it receives the ACK of the command frame. It then expects an
 ACK after the data frame is sent.

 If the operation is an input (R = 1) the computer expects a data frame
 from the peripheral after the ACK. With either input or output, a
 "complete" code ($43) should be sent to the computer when the
 operation is finished. The "complete" code would follow the ACK of
 the data frame with an output operation.

 If the operation is not completed for some reason, the peripheral
 should send an error code ($45) instead of "complete".

 SIO data frame

 byte 1 $xx\
 > data bytes
 byte n $xx/
 byte n+1 $xx checksum

 SIO commands

 READ $52
 WRITE $57
 STATUS $53
 PUT $50
 FORMAT $21
 DOWNLOAD $20
 READADDR $54
 READ SPIN $51
 MOTOR ON $55
 VERIFY
 SECTOR $56

 Present SIO device I.D.s

 DISK $31 - $34 (D1 - D4)

 PRINTER $40
 RS-232-C $50 - $53 (R1 - R4)

 THE SERIAL CONNECTOR

 The serial connectors on the computer and all peripherials are
 identical. Nearly all peripherials have two serial connectors.
 Either connector may be used for any connection. The serial bus is
 designed so that peripherials can be daisy-chained together. The
 following is a diagram of the serial connector.

 The serial connector pin-out

 1 1
 2 4 6 8 0 2

 /o o o o o o\
 /o o o o o o o\

 1 3 5 7 9 1 1
 1 3

 1 clock in (to computer)
 2 clock out
 3 data in
 4 GND
 5 data out
 6 GND
 7 command (active low)
 8 cassette motor control
 9 proceed (active low)
 10 +5V/ready
 11 audio in
 12 +12V (400/800)
 13 interrupt (active low)

 Proceed goes to pin 40 (CA1) of the PIA. It is not used by present
 peripherials.

 Interrupt goes to pin 18 (CB1) of the PIA. It is not used by present
 peripherials.

 Pin 10 doubles as a 50mA +5V peripharal power supply and a computer
 ready signal.

 Useful database variables and OS equates

 SIOV $E459 (58457): serial port handler entry
 DDEVIC $0300 (768): device ID
 DUNIT $0301 (769): device number
 DCOMND $0302 (770): command byte

 DSTATS $0303 (771): status byte
 DBUFLO $0304 (772): data buffer pointer
 DBUFHI $0305 (773):
 DTIMLO $0306 (774): timout value
 DBYTLO $0308 (776): number of bytes to transfer
 DBYTHI $0309 (777):
 DAUX1 $030A (778): sent to device
 DAUX2 $030B (779): sent to device

 CHAPTER 14

 THE HARDWARE CHIPS

 The previous chapters described the operating system of the computer.
 The following chapters will examine the hardware which supports the
 6502 and the hardware's associated software.

 THE GTIA CHIP

 The GTIA (George's Television Interface Adapter) is the main video
 circuit in the computer. It controls the following functions.

 GTIA functions

 Priority of overlapping objects

 Color and brightness, including information from the antic chip.

 Player/missile control.

 console switches and game control triggers.

 THE ANTIC CHIP

 The main job of the ANTIC chip is interpreting the display buffer for
 the GTIA chip. The ANTIC chip is somewhat of a processor in it's own
 right. The program which runs it is called the display list and
 usually resides just before the display buffer in memory.

 The ANTIC chip operates independent of the 6502. It operates by
 direct memory access (DMA). The ANTIC chip gives a HALT signal the
 6502, causing the 6502 to give up control of the address bus. The
 ANTIC chip can then read any data it needs to from memory.

 ANTIC chip functions

 DMA (Direct Memory Access) control.

 NMI (Non-Maskable Interrupt) control.

 LIGHT PEN READING

 WSYNC (wait for horizontal sync)

 THE POKEY CHIP

 The most important jobs of the POKEY chip are reading the keyboard and
 operating the serial port. It also has the following functions.

 POKEY chip functions

 Keyboard reading.

 Serial port.

 Pot (game paddles) reading.

 Sound generation.

 System timers.

 IRQ (maskable interrupt) control.

 Random number generator.

 THE PIA CHIP

 The PIA (Parallel Interface Adapter) is a commonly used I/O chip. It
 consists of two 8 bit parallel ports with hand shaking lines. In the
 Atari, it has the following functions.

 Game controller port control (bi-directional).

 Peripheral control and interrupt lines.

 Registers in the hardware chips are treated as memory addresses. Many
 of the registers are write only. These registers cannot be read from
 after they are written to. Other registers control one function when
 written to and give the status of an entirely different function when
 read from. Still other registers are strobes. Any command which
 causes the address of one of these registers to appear on the address
 bus will cause their functions to be performed.

 The write only registers have shadow registers in RAM. Data to be put
 in the registers is usually put into the shadow registers. The data
 in the shadow registers is automatically moved to the operating
 registers during vertical blank.

 For register use and address, see the previous chaptes on the
 associated functions.

 CHAPTER 15

 DISPLAY LISTS

 [some of this file was lost...]

 chip also has a memory scan counter. This register scans the display
 buffer for data to be interpreted and displayed. Once loaded, the
 memory scan counter's 4 most significant bits are fixed. The result
 is that the memory scan counter cannot cross a 4K memory boundary
 (i.e. $AFFF to $B000) without being reloaded.

 DISPLAY LIST INSTRUCTIONS

 There are three basic instructions in the display list. The type of
 instruction is determined by bits 0,1,2 and 3 of an instruction byte.
 The other four bits give auxilliary parameters for the instruction.
 Bit 7 always enables a display list interrupts (DLIs).

 Display list instruction format

 7 6 5 4 3 2 1 0

 |I|n|n|n|0|0|0|0|

 \ / \ /
 --- ------
 | |
 | 0 = display blank lines
 |
 0-7 = number of blank lines (1-8)

 7 6 5 4 3 2 1 0

 |I|W| | |0|0|0|1|

 | \ /
 | ------
 | |
 | 1 = jump (3 byte instruction)
 |
 0 = jump and display one blank line
 1 = jump and wait for vertical blank

 7 6 5 4 3 2 1 0

 |I|R|H|V|M|M|M|M|

 | | | | \ /
 | | | | ------

 | | | | |
 | | | | 2-F = display one line of graphics in
 | | | | ANTIC mode 2-F
 | | | 1 = horizontal scroll enabled
 | | |
 | | 1 = vertical scroll enabled
 | |
 | 1 = reload memory scan counter with next two bytes
 |
 1 = display list interrupt, all instructions

 In the display instruction, the ANTIC mode is different from the CIO
 graphics mode. However, each CIO graphics mode uses a particular
 ANTIC mode. Below are descriptions of the ANTIC modes with their
 associated graphics (CIO) modes.

 ANTIC MODE 2 (Graphics 0)

 Uses 8 pixel by 8 pixel characters, 40 characters horizontal, 8 TV
 scan lines vertical. Only one color can be displayed at a time.

 ANTIC MODE 3

 8 X 10 pixel, Graphics 0 type characters. This mode requires a custom
 character set. The advantage is that it allows true decenders. The
 custom C-set is still 8 X 8 pixels. Lower-case letters with decenders
 have the bottom row of pixels put on the top row.

 Lower-case "y" for ANTIC mode 3

 C-set Display

 ---------- ----------
 | XXXXX | | |
 | | | |
 | | | |
 | XX XX | | XX XX |
 | XX XX | | XX XX |
 | XX XX | | XX XX |
 | XXXXX | | XXXXX |
 | XX | | XX |
 ---------- | XXXXX |
 | |

 ANTIC MODE 4 (graphics 12 on XL and XE)

 This mode has characters the same size as graphics 0. However, the
 characters are only 4 X 8 pixels. This gives only half the horizontal
 resolution of graphics 0. The advantage is that up to four colors of
 "graphics 0" characters can be displayed at once. This mode also
 requires a custom C-set. Below is a comparison of the normal C-set to
 one which works with the ANTIC 4 mode.

 Upper-case "A" for ANTIC modes 2 and 4

 mode 2 mode 4

 ---------- ----------
 | | | |
 | XX | | yy |
 | XXXX | | yy |
 | XX XX | |xx zz |
 | XX XX | |xx zz |
 | XXXXXX | |xxyyzz |
 | XX XX | |xx zz |
 | | | |
 ---------- ----------

 xx, yy and zz represent two bit binary numbers, controlling one pixel
 each. These numbers determine which color register a pixel is
 assigned to: (COLOR0, COLOR1, COLOR2 or COLOR3).

 ANTIC mode 5

 Antic mode five is identical to ANTIC mode 4 except the characters are
 displayed twice as tall. This makes only 12 lines on the screen.

 ANTIC MODE 6 (Graphics 1)

 This mode uses 8 X 8 pixel characters except they are displayed twice
 as wide as in ANTIC mode 2. There are 3 colors available at once but
 only one case (upper or lower) can be displayed at a time. The data
 base variable CHBAS [$02F4 (756)] controls the character, [$E0 (224) =
 upper-case, $E2 (226) = lower-case]

 The color/character is controlled by either the color statement or the
 ATASCII number of the character printed. Control characters are
 controlled by COLOR0, upper-case characters by COLOR1 and lower-case
 characters by COLOR2. Remember that all characters print as
 upper-case alpha characters, but of different colors.

 ANTIC MODE 7 (Graphics 2)

 This mode is identical to mode 6 except the characters are displayed
 twice as tall. This results in only 12 lines possible on the screen.

 ANTIC MODE 8 (Graphics 3)

 This is the first graphics (non-character) mode. This mode, as other
 non-character graphics modes do, uses data in the display buffer as a
 bit map to be displayed.

 A command to display in mode 8 will cause the ANTIC chip to read the
 next 10 bytes in the display buffer. Each pair of bits will control
 one pixel as in mode 4. However, the pixels are blocks the same size
 as a Graphics 0 (ANTIC 2) characters.

 ANTIC MODE 9 (Graphics 4)

 This is similar to ANTIC mode 8 except each byte controls 8 pixels
 (instead of 4) and only one color can be displayed at a time. The
 pixels are also half the size of those in ANTIC mode 8.

 ANTIC MODE A (Graphics 5)

 This mode uses 20 bytes per line/command. As in ANTIC mode 8, each
 pair of bits controls one pixel. The result is that the pixels are
 the same size as in ANTIC mode 9 but four colors can be displayed at
 once.

 ANTIC MODE B (Graphics 6)

 As in mode A, there are 8 pixels per byte and only one color. The
 pixels are half the size as in mode A.

 ANTIC MODE C

 Like mode B except the pixels are half as tall (only one T.V. line).

 ANTIC MODE D (Graphics 7)

 40 Bytes per line, each byte controls 4 pixels. The pixels are 1/4 as
 large as in ANTIC mode 8 (Graphics 3).

 ANTIC MODE E (Graphics 15 on XL and XE)

 Like mode D except the pixels are half as tall (one T.V. line). Antic
 mode E is sometimes called Graphics 7.5

 ANTIC mode F (Graphics 8, 9, 10 and 11)

 This is the highest resolution mode. Pixels are 1/8 the size of ANTIC
 mode 8 or mode 2 characters. It uses 40 bytes per line, each byte
 controlling 8 pixels, unless the GTIA chip intervenes. Only one color
 can be displayed at a time.

 DISPLAY LIST EXAMPLES

 When CIO opens a channel to the screen, it sets up the proper display
 list for the ANTIC chip. The following are the things CIO must handle
 when setting up the display list.

 Display list duties as used by CIO

 display a certain number of blank lines at the top of the screen.

 Load the memory scan counter with the address of the display data
 buffer.

 Display the required number of lines in the required ANTIC mode.

 Set up a jump instruction if the display list crosses a 1K memory
 boundary.

 Set up a reload-memory-scan-counter instruction if the display data
 buffer crosses a 4K memory boundary.

 CIO assumes that the display data buffer will butt against an 8K
 memory boundary. If a program causes the display buffer to cross a 4K
 boundary (by changing RAMTOP [$006A (106)] to point to an address
 which is not at an 8K boundary) the screen will be scrambled. This is
 not usually a problem if the graphics mode doesn't require a large
 block of memory.

 SAMPLE DISPLAY LIST

 Below is an example of a Graphics 0 display list as CIO would set it
 up.

 Display list for Graphics 0
 assuming BASIC starts at $A000

 address instruction explanation

 Dec. Hex.

 $9C20 112 $70 \
 112 $70 >---- 24 blank lines (8 each command)
 112 $70 /
 66 $42 ----- load memory scan counter with
 $9C24 64 $40 __ next two bytes and display one line
 156 $9C / \ of ANTIC 2 characters
 2 $02 -\ |
 2 $02 | \- address of display data buffer
 2 $02 |
 2 $02 \--- 2nd ANTIC 2 instruction

 - ---

 2 $02 ----- 24th ANTIC 2 instruction
 65 $41 \
 32 $20 >---- jump back to start of list
 156 $9C /
 $9C40 ??? ?? first byte of display data buffer

 --- --

 $9FFF ??? ?? last byte of buffer

 $A000 start of ROM

 A display list for a higher resolution graphics mode would require
 more instructions and might cross a 1K boundary. It would then
 include a jump instruction to cross the boundary.

 MULTIPLE DISPLAYS

 It is possible to set up multiple displays and use one at a time. The

 technique of changing from one display to another is called page
 flipping. Below is the simplest way to set up two displays.

 setting up two displays

 Call a graphics mode through CIO or by using a BASIC GRAPHICS
 command.

 Store the display list pointers, SDLSTL and SDLSTH, and the CIO screen
 pointer, SAVMSC [$0058,2 (88)].

 Move the start-of-ROM pointer, RAMTOP [$006A (106)] to below the
 current display list. RAMTOP is a one byte pointer so it changes in
 increments of one page (256 bytes).

 make another graphics call as in the first step.

 store the new display list pointer and CIO screen pointer.

 This will set up two displays, each with it's own display list. If
 the displays are in the same graphics mode, or you will not make any
 changes in the displays with CIO commands, (PLOT, PRINT, etc.) you can
 flip between the two simply by changing the display list pointer.

 If the screens are in the same graphics mode and you want to change
 which one to do CIO commands to, Change the CIO screen pointer, SAVMSC
 [$0058,2 (88)]. This way, you can display one screen while drawing on
 the other.

 If you want to do CIO commands to screens of different graphics modes,
 you will have the move RAMTOP and do a graphics call to change
 screens.

 If your manipulation of RAMTOP causes the display data buffer to cross
 a 4K boundary, the screen may be scrambled.

 DISPLAY LIST INTERRUPTS

 DLIs are not used by the operating system. However, other programs
 can initiate and use them. Use the following steps to set up display
 list interrupts.

 Setting up DLIs

 Set bit 7 of the display list instruction for the line before you want
 the interrupt to occur. (The interrupt routine should set WSYNC and
 wait for the next line to execute.)

 Set bit 7 of NMIEN [$D40E (54286)] to enable DLIs.

 Set the DLI routine vector, VDSLST [$0200,2 (512)] to point to your
 machine language DLI routine.

 Your DLI routine should set WSYNC [$D40A (54282)]. STA WSYNC will do.
 THis will cause the 6502 to wait for the next horizontal sync. This
 will keep the DLI routine from changing something in the middle of a

 T.V. line.

 The DLI routine must end with an RTI instruction.

 SCROLLING

 Scrolling is controlled by a combination of scroll position registers,
 and changing the memory scan counter. Basically, course scrolling is
 done by reloading the memory scan counter and fine scrolling is done
 by changing the scroll registers.

 VERTICAL SCROLLING

 Vertical scrolling is very simple. Follow the steps below to set up
 vertical scrolling of graphics.

 Steps to use vertical scrolling

 Set bit 4 of the first byte of the display list instruction for each
 line to be scrolled.

 Put the number of T.V. lines to offset the graphics vertically in the
 vertical scroll register, VSCROL [$D405 (54277)]

 The vertical scroll register can offset the graphics upward by 0 - 7
 T.V. lines in the 24 line graphics modes (ANTIC modes 2 and 4). In 12
 line graphics modes (ANTIC modes 5 and 7) it can vertically offset the
 graphics by 0 - 15 T.V. lines. To offset the graphics an 8th (or
 16th) line, the scroll register is reset to 0 and the memory scan
 counter is reloaded with the address of the next line of graphics in
 the display data buffer. If the entire screen is being scrolled, the
 load-memory-scan-counter command (near the beginning of the display
 list) is changed to point to the address of the second line of
 graphics.

 HORIZONTAL SCROLLING

 Horizontal scrolling works much like vertical scrolling. It is
 enabled by setting bit 5 of the instruction for each line to be
 scrolled. The horizontal scroll register, HSCROL [$D404 (54276)],
 sets the offset. The small difference is that graphics are moved
 twice as far per change (two graphics 8 pixels instead of one). Also,
 when HSCROL = 0 the graphics are offset beyond the left edge of the
 screen by 16 color clocks (32 Graphics 8 pixels). When HSCROL = 15,
 the graphics line is shifted one color clock (2 Graphics 8 pixels) to
 the left of the screen.

 The big difference is that the memory scan counter gets messed up.
 This means that you must use a reload-memory-scan-counter command for
 each line of graphics. This is a major modification of the display
 list. It will require you to move and build the list yourself.

 The advantage of this is that you can have a scrolling window in a
 large graphics map. The technique is to move the window by reloading
 the memory scan counter, then fine scrolling to the invisible bytes
 beyond the edges of the screen.

 useful data base variables and OS equates

 SAVMSC $0058,2 (88): pointer to current screen for CIO commands
 RAMTOP $006A (106): start-of-ROM pointer (MSB only)
 VDSLST $0200,2 (512): DLI vector
 RAMSIZ $02E4 (740): permanent start-of-ROM pointer (MSB only)
 DLISTL $D402 (54274): display list pointer low byte
 DLISTH $D403 (54275): " high byte
 HSCROL $D404 (54276): horizontal scroll register
 VSCROL $D405 (54277): vertical scroll register
 NMIEN $D40E (54286): NMI enable (DLIs)

 Shadow registers

 SDLSTL $0230 (560): DLISTL
 SDLSTH $0231 (561): DLISTH

 CHAPTER 16

 PLAYER AND MISSILE (PM) GRAPHICS

 Players and missiles (called sprites on some computers) are movable
 objects which are independent of the normal graphics.

 Player and missile graphics are fairly straight forward. Once the
 computer is set-up for PM graphics, five 8-pixel-wide columns can be
 displayed on the screen. The horizontal resolution (width of each
 pixel) and the vertical resolution (number of scan lines per pixel)
 are variable. The horizontal position of each column is determined by
 it's horizontal position register. Each column is simply a
 representation of a bit map in a certain block of memory. If you want
 to draw an object on the screen, you simply put a bit map representing
 it in the proper memory block. The vertical position of an object is
 determined by the location of it's bit map in memory. For example, if
 you want to draw a happy face in the middle of the screen, you put a
 happy face bit map in the middle of one of the memory blocks
 controlling one of the columns.

 One column (player) displayed on the screen

 ---------- first byte of a block
 | |
 | |

 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | ++++ | visible |
 | | + + | |
 | |+ + + +| |
 | |+ +| area |
 | |++ ++| |
 | |+ ++++ +|--object |
 | | + + | bit map |
 | | ++++ | |
 | | | |
 | | | |
 | | | |

 | |
 | |
 ---------- last byte of a block

 Horizontal positions

 $00 $30 $CE $FF
 (0) (48) (206) (255)
 | | | |
 | Left edge right edge |
 | |
 Far left far right

 To move the happy face vertically you would move the entire bit map in
 memory. To move the happy face horizontally you change the number in
 the horizontal position register for the proper player.

 One of the players can be (and often is) split into four columns of
 two pixels wide each. These columns are then called missiles. In
 this case, each missile has it's own horizontal position register.

 SETTING UP PM GRAPHICS

 PM graphics are enabled by the direct memory access control register,
 DMACTL [$D400 (54272)]. The program using PM graphics will usually
 use the shadow register, SDMCTL [$022F (559)].

 DMACTL (SDMCTL)

 7 6 5 4 3 2 1 0

 |0|0| control |

 bits

 5 1 = enable display list reading
 4 0 = one line player resolution
 1 = two line player resolution
 3 1 = enable four players
 2 1 = enable fifth player or missiles
 1 & 0 00 = no background
 01 = narrow background (128 color clocks,
 1 color clock equals 2 GRAPHICS 8 pixels)
 10 = normal background (160 color clocks)
 11 = wide background (192 color clocks)

 Normally, bits 5 and 1 are set to 1. Bits 4, 3 and 2 are used to
 enable players and/or missiles accordingly.

 Once DMACTL is set up for the type of PM graphics to enable, the
 graphics control register, GRACTL [$D01D (53277)], is used to actually
 enable the PM graphics.

 GRACTL

 7 6 5 4 3 2 1 0

 |not used | | | |

 Bits

 2 1 = latch paddle triggers
 1 1 = enable four players
 0 1 = enable fifth player or missiles

 If only DMACTL is set up, the ANTIC chip will access memory for PM
 graphics but will not display them.

 Next, the memory area used for the PM bit maps must be set. This
 block must start on a 2K (8 page) boundary if single line resolution
 is used and a 1K (4 page) boundary for two line resolution.

 The page number where the bit map starts is stored in the PM base
 register, PMBASE [$D407 (54279)]. For one line resolution this number
 will be a multiple of 8. For two line resolution it will be a
 multiple of 4. PMBASE holds the MSB of the address of the PM bit map.
 The LSB will always be 0 so it need not be specified.

 The PM bit maps

 2 line resolution
 128 bytes (1/2 page)
 per player

 ----------------- start + 0
 | |\
 +---------------+ 1-1/2 page
 | | (384 bytes)
 +===============+ unused
 | |/
 +---------------+ +$180 (384)
 |M3 |M2 |M1 |M0 | fifth player or missiles
 +===============+ +$200 (512)
 | player 0 map |
 +---------------+ +$280 (640)
 | player 1 map |
 +===============+ +$300 (768)
 | player 2 map |
 +---------------+ +$380 (896)
 | player 3 map |
 +===============+ +$400 (1024)

 1 line resolution
 256 bytes (1 page)
 per player

 ----------------- start + 0
 | |\
 + +
 | |
 +===============+
 | | 768 bytes
 + +
 | | (3 pages)

 +===============|
 | | unused
 + +
 | |/
 +===============+ +$300 (768)
 | | | | | fifth player
 +M3 |M2 |M1 |M0 | or missiles
 | | | | |
 +===============+ +$400 (1024)
 | |
 + player 0 map +
 | |
 +===============+ +$500 (1280)
 | |
 + player 1 map +
 | |
 +===============+ +$600 (1536)
 | |
 + player 2 map +
 | |
 +===============+ +$700 (1792)
 | |
 + player 3 map +
 | |
 +===============+ +$800 (2048)

 Example of using P/M graphics in BASIC

 0 REM ---LABEL REGISTERS ETC
 10 LINES=2
 20 VERT=120
 22 IF LINES=2 THEN VERT=VERT/2
 30 PM0=1024
 32 IF LINES=2 THEN PM0=PM0/2
 40 HORIZ=120
 50 PCOLR0=704
 60 SDMCTL=559
 70 SIZEP0=53256
 80 HPOSP0=53248
 90 SDMCTL=559
 100 PMRAM=PEEK(106)-16
 110 PMBASE=54279
 120 GRACTL=53277
 130 PMSTART=PMRAM*256+PM0
 200 REM ---SET REGISTERS
 210 POKE SDMCTL,62
 212 IF LINES=2 THEN POKE SDMCTL,46
 220 POKE SIZEP0,1
 230 POKE HPOSP0,HORIZ
 240 POKE PCOLR0,88
 250 POKE PMBASE,PMRAM
 260 POKE GRACTL,3
 300 REM ---DRAW PLAYER

 310 POKE PMSTART+VERT,60
 320 POKE PMSTART+VERT+1,66
 330 POKE PMSTART+VERT+2,165
 340 POKE PMSTART+VERT+3,129
 350 POKE PMSTART+VERT+4,195
 360 POKE PMSTART+VERT+5,189
 370 POKE PMSTART+VERT+6,66
 380 POKE PMSTART+VERT+7,60

 The above program will draw a happy face in about the middle of the
 screen using player 0. To move the player horizontally, poke a
 different number into HPOSP0. To draw the player in a different
 vertical position, change VERT. To use a different player or missile,
 use the memory maps above to find the starting address of the player
 you want to use. For example, to use player 1 change line 40 to
 PM1=1280. Then change line 130 to PMSTART=PMRAM*256+PM1. The
 variable "LINES" determines the vertical resolution. The number poked
 into SIZEP0 determines the width.

 P/M PRIORITY

 The priorities of players, missiles and non-P/M graphics can be
 controlled by the PRIOR register [$D10B (53275)] and its shadow
 register, GPRIOR [$26F (623)]. Objects with higher priority will
 appear to move in front of lower priority objects. The format of
 PRIOR is as follows:

 PRIOR bit assignment

 7 6 5 4 3 2 1 0

 | | | | | | | | |

 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 Bits

 7-6 Control the GTIA graphics modes.

 00 = normal
 01 = mode 9
 10 = mode 10
 11 = mode 11

 5 1 = multiple color player enable. Permits
 overlapping of players 0 and 1 or
 2 and 3 with a third color in the
 overlapped region.

 4 1 = fifth player enable. All missiles
 will assume the color controlled by

 COLOR3 [$2C7 (711)]. missiles are
 positioned together to make the fifth

 player.

 3-0 Controls the priorities of players, missiles
 and other graphics. Objects with higher priority will appear to move
 in front of those with lower priority.

 The following chart may need some clarification. In the chart:

 PM0 = player 0 and missile 0

 C0 = COLOR0, plotted graphics controlled
 by color register 0 in the SETCOLOR
 command.

 P5 = all four missiles when combined
 into one player.

 BAK = the background, known as COLOR4 or color
 register 4 in the SETCOLOR command.

 Etc.

 Bits 0-3 of PRIOR and P/M priorities

 Bit 3=1 2=1 1=1 0=1

 C0 C0 PM0 PM0 highest
 C1 C1 PM1 PM1 priority
 PM0 C2 C0 PM2
 PM1 C3+P5 C1 PM3
 PM2 PM0 C2 C0
 PM3 PM1 C3+P5 C1
 C2 PM2 PM2 C2
 C3+P5 PM3 PM3 C3+P5 lowest
 BAK BAK BAK BAK priority

 Only one priority bit can be set at a time. If more than one priority
 bit is 1, overlapping areas of conflicting priorities will turn
 black.

 COLLISIONS

 Each player or missile has a register showing overlap (collisions)
 with other objects. Each player has two registers assigned to it; one
 to detect collisions with other players and one to detect collisions
 with plotted objects. Likewise each missile has two registers; one to
 detect collisions with players and one to detect collisions with
 plotted objects. Careful use of these 16 registers can detect any
 type of collision.

 Each register uses only the lower 4 bits. The bits which equal 1 tell
 what the associated object has collided with. For example, to detect
 collisions of player 1 to other players examine P1PL [$D00D (53261)].

 P1PL, player 1 to player collisions

 7 6 5 4 3 2 1 0

 P1PL |unused | | | | |

 8 4 2 1

 3 = 1 collision with player 3
 2 = 1 collision with player 2
 1 = 1 invalid
 0 = 1 collision with player 0

 Etc.

 When looking for collisions with plotted objects, the bit number tells
 what color register is assigned to the object the collision was with.
 For example, to detect collisions between player 1 and plotted objects
 (officially called the play field), P1PF [$D005 (53253)] is used.

 P1PF, player 1 to ploted object collisions

 7 6 5 4 3 2 1 0

 P1PF |unused | | | | |

 8 4 2 1

 3 = 1 collision with COLOR3
 2 = 1 " COLOR2
 1 = 1 " COLOR1
 0 = 1 " COLOR0

 Etc.

 Once a collision occurs it remains indicated in its collision
 register. To clear out all collision registers, write anything to
 HITCLR [$D01E (53278)]. STA HITCLR or POKE 53278,0 will do.

 Useful database variables and OS equates

 HPOSP0 $D000 (53248): write: horizontal position of player 0
 M0PF " " : read: missile 0 to plotted graphics collisions
 HPOSP1 $D001 (53249): write: horizontal position of player 1
 M1PF " " : read: missile 1 to plotted graphics collisions
 HPOSP2 $D002 (53250): write: horizontal position of player 2
 M2PF " " : read: missile 2 to plotted graphics collisions
 HPOSP3 $D003 (53251): write: horizontal position of player 3
 M3PF " " : read: missile 3 to plotted graphics collisions
 HPOSM0 $D004 (53252): write: horizontal position of missile 0
 P0PF " " : read: Player 0 to plotted graphics collisions
 HPOSM1 $D005 (53253): write: horizontal position of missile 1
 P1PF " " : read: Player 1 to plotted graphics collisions
 HPOSM2 $D006 (53254): write: horizontal position of missile 2
 P2PF " " : read: Player 2 to plotted graphics collisions
 HPOSM3 $D007 (53255): write: horizontal position of missile 3
 P3PF " " : read: Player 3 to plotted graphics collisions
 SIZEP0 $D008 (53256): write: size of player 0

 M0PL " " : read: missile 0 to player collisions
 SIZEP1 $D009 (53257): write: size of player 1
 M1PL " " : read: missile 1 to player collisions
 SIZEP2 $D00A (53258): write: size of player 2
 M2PL " " : read: missile 2 to player collisions
 SIZEP3 $D00B (53259): write: size of player 3
 M3PL " " : read: missile 3 to player collisions
 SIZEM $D00C (53260): write: widths for all missiles
 P0PL " " : read: player 0 to other player collisions
 GRAFP0 $D00D (53261): write: player 0 graphics (used by OS)
 P1PL " " : read: player 1 to other player collisions
 GRAPF1 $D00E (53262): write: player 1 graphics
 P2PL " " : read: player 2 to other player collisions
 GRAFP2 $D00F (53263): write: player 2 graphics
 P3PL " " : read: player 3 to other player collisions
 GRAPF3 $D010 (53264): write: player 3 graphics
 GRAFM $D011 (53265): write: missile graphics (used by OS)
 COLPM0 $D012 (53266): color for player/missile 0
 COLPM1 $D013 (53267): color for player/missile 1
 COLPM2 $D014 (53268): color for player/missile 2
 COLPM3 $D015 (53269): color for player/missile 3
 COLPF0 $D016 (53270): color register 0
 COLPF1 $D017 (53271): color register 1
 COLPF2 $D018 (53272): color register 2
 COLPF3 $D019 (53273): color register 3
 COLBK $D01A (53274): background color (register 4)
 PRIOR $D01B (53275): priority select, GTIA modes
 GRACTL $D01D (53277): graphics control
 HITCLR $D01E (53278): writing anything clears all collision bits
 DMACTL $D400 (54272): direct memory access (DMA) control
 PMBASE $D407 (54279): start of P/M memory

 Shadow registers

 SDMCTL $022F (559): DMACTL
 GPRIOR $026F (623): PRIOR
 PCOLR0 $02C0 (704): COLPM0
 PCOLR1 $02C1 (705): COLPM1
 PCOLR2 $02C2 (706): COLPM2
 PCOLR3 $02C3 (707): COLPM3
 COLOR0 $02C4 (708): COLPF0
 COLOR1 $02C5 (709): COLPF1
 COLOR2 $02C6 (710): COLPF2
 COLOR3 $02C7 (711): COLPF3
 COLOR4 $02C8 (712): COLBK

 CHAPTER 17

 SOUND

 Generating sound can be very simple. For simple sounds there are four
 audio channels, each controlled by two control registers.

 GENERATING SOUNDS

 To generate a sound in channel 1, put the frequency and volume codes
 into the frequency and control registers. The frequency register for
 channel 1, AUDF1 [$D200 (53760)] can have any number from 0 to $FF
 (255). 0 causes the highest frequency; 255 causes the lowest. The
 volume/noise (control) register for channel 1, AUDC1 [$D201 (53761)]
 is more complicated.

 Audio channel control (volume/noise) register

 7 6 5 4 3 2 1 0

 AUDCx | noise | volume|

 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 The noise bits can have various values. The best way to learn to use
 them is by experimentation. The technical details of the polynomial
 counters which generate the noise has little bearing on what is heard.
 The two special values of interest are: $1 (volume+16 in decimal),
 which causes a DC voltage proportional to the volume bits and; $A
 (volume+160), which causes a pure tone (square wave). The volume bits
 select the relative volume, 0=off. Therefore, the number, $A8 (168
 [8+160]) in AUDC1, will cause the frequency selected by AUDF1 to be a
 pure tone of medium volume.

 In BASIC the dirty work is done fore you. The SOUND command will do
 all the calculations for you. The Sound command format is shown
 below.

 The BASIC sound command format

 SOUND channel,frequency,noise,volume

 The channel numbers is 0 to 3 instead of 1 to 4. The frequency, 0 to
 255, is put into the frequency register. The noise is put into the
 high bits of the channel control register with volume in the low bits.
 Therefore...

 SOUND 0,125,10,8

 will produce a pure tone of medium frequency and volume in channel 0
 (called channel 1 in assembly language).

 ADVANCED SOUND

 The Audio Control register, AUDCTL [$D208 (53768)], (not to be
 confused with the four audio channel control registers), adds more
 control for assembly language programmers. Again, to go into
 technical details will be less productive than experimentation.

 The audio control register. (AUDCTL)

 7 6 5 4 3 2 1 0

 AUDCTL | | | | | | | | |

 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 7 0 = 17 bit polynomial noise
 1 = 9 bit below polynomial noise
 6 0 = clock channel 1 with 64 KHz
 1 = clock channel 1 with 1.79 MHz
 5 0 = clock channel 3 with 64 KHz
 1 = clock channel 3 with 1.79 MHz
 4 0 = clock channel 2 with 64 KHz
 1 = clock channel 2 with channel 1
 3 0 = clock channel 4 with 64 KHz
 1 = clock channel 4 with channel 3
 2 1 = insert logical high-pass filter in
 channel 1, clocked by channel 3
 1 1 = insert logical high-pass filter in
 channel 2, clocked by channel 4
 0 0 = 64 KHz main clock
 1 = 16 KHz main clock

 All bits of AUDCTL are normally zero. The BASIC sound command causes
 it to be reset to zero.

 By clocking one channel with another, the range can be increased.
 This essentially allows two channels with twice the range as each of
 the four normal channels. This is called 16 bit sound.

 To calculate exact frequencies, use the following formulas. The exact
 clock frequencies are also given if more accuracy is needed. The
 clock frequencies are acquired by dividing the signal from the TV
 color-burst crystal. This crystal has a frequency of 3.579545 MHz.

 Clock frequencies:

 1.7897725 MHz (color-burst/2)

 63.920446 Khz (color-burst/56)

 15.699759 KHz (color-burst/228)

 Formulas:

 For 1.79 MHz

 clock clock
 f = ------------ f = ------------
 2(AUDFn + 7) 2(AUDFn + 4)

 16 bit 8 bit

 AUDFn is the number in the audio frequency register.

 For 16 KHz and 64 KHz

 clock
 f = ------------
 2(AUDFn + 1)

 AUDIO TIMER INTERRUPTS

 When the audio timers count down to zero they generate IRQ interrupts
 (if enabled). The timers can be reset by writing any number to STIMER
 [D209 (53769)].

 THE CONSOLE SPEAKER

 The console speaker is where key clicks and the cassette signals come
 from. On XL and XE models this speaker is heard through the TV
 speaker. It is operated by toggling bit 3 of CONSOL [$D01F (53279).
 This bit always reads 0 but it is actually set to 1 during vertical
 blank.

 Useful data base variables and OS equates

 CONSOL $D01F (53279): bit 3 controls console speaker
 AUDF1 $D200 (53760): Audio frequency 1
 AUDC1 $D201 (53761): audio control 1
 AUDF2 $D202 (53762): Audio frequency 2
 AUDC2 $D203 (53763): audio control 2
 AUDF3 $D204 (53764): Audio frequency 3
 AUDC3 $D205 (53765): audio control 3
 AUDF4 $D206 (53766): Audio frequency 4
 AUDC4 $D207 (53767): audio control 4
 AUDCTL $D208 (53768): general audio control
 STIMER $D209 (53769): audio timer reset

 CHAPTER 18

 THE JOYSTICK PORTS

 The joystick ports are the I/O ports of the PIA chip. This means that
 they are bidirectional, capable of output as well as input. The
 joystick ports are usually set up for input. To read them, simply
 read the port registers. PORTA [$D300 (53016)] will read joystick
 ports 1 and 2. PORTB [$D301 (54017)] will read joystick ports 3 and
 4. Joystick ports 3 and 4 are used for memory control on the XL/XE
 models and don't have external connectors.

 Each bit of each port can be configured independently for input or
 output. To reconfigure a port, the port control registers, PACTL and
 PBCTL [$D302 (54018) and $D303 (54019)], are used. The port control
 registers also control some lines on the serial I/O connector.

 The port control registers

 7 6 5 4 3 2 1 0
 PACTL -----------------
 or |n 0 1 1 n n 0 n|
 PBCTL -----------------
 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 bits
 PACTL

 7 Peripheral A interrupt status. Set by peripheral
 interrupt; reset by reading PORTA.
 3 Cassette motor control (0 = on: 1 = off).
 2 0 = PORTA is now port A direction control.
 Writing to PORTA will now set bits for input
 or output.
 0 sets bit for input; 1 sets bit for output.
 1 = PORTA operational
 1 1 = peripheral A interrupt enabled.

 PBCTL

 7 Peripheral B interrupt status. Set by peripheral
 interrupt; reset by reading PORTB.
 3 Serial connector command line.
 2 0 = PORTB is now port B direction control.
 Writing to PORTB will now set bits for input
 or output.
 0 sets bit for input; 1 sets bit for output.
 1 = PORTB operational
 1 1 = peripheral B interrupt enabled.

 The electronic configuration of the controller ports is as follows.

 ----------- -----------
 \0 1 2 3 R/ \4 5 6 7 R/
 \t + - L/ \t + - L/
 ------- -------

 0 through 7 are the binary data bits for port A or port B.

 + and - are +5 volts and ground respectively.

 R and L are the left and right game paddles.

 t is the joystick trigger line.

 The data bits in the joystick ports are used as follows for the
 joysticks and game paddles.

 The joysticks and the port registers

 7 6 5 4 3 2 1 0

 PORTA |U|D|L|R|U|D|L|R|

 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 paddle | | | |
 triggers 3 2 1 0

 PORTB -----------------
 (400/800 |U|D|L|R|U|D|L|R|
 only) -----------------

 paddle | | | |
 triggers 7 6 5 4

 U = up
 D = down
 L = left
 R = right

 The joysticks may be read either directly from the port registers or
 from the joystick shadow registers. During vertical blank, the data
 in the port registers is separated and put into the shadow registers.
 These registers are, STICK0 [$0278 (632)], STICK1 [$0279 (633)],
 STICK2 [$027A (634)] and STICK3 [$027B (635)]. The triggers may be
 read from the joystick trigger registers, TRIG0 - TRIG3 [$D010 - $D013
 (53264 - 53267)]. These register have shadow registers, STRIG0 -
 STRIG3 [$0284 - 0287 (644 -647)]. If these registers read zero the
 associated triggers are pressed. The paddle triggers may be read from
 their shadow registers also. They are, PTRIG0 - PTRIG 7, [$027C -
 $0283 (236 - 643)].

 THE GAME PADDLE REGISTERS

 Although the game paddles are plugged into the joystick ports, they
 are not read from the port registers. The game paddles are read by
 first writing any number to the start-pot-scan register, POTGO [$D20B
 (53771)]]. This turns off the capacitor dump transistors and allows
 the pot reading
 capacitors to begin charging. It also sets the TV scan line counter
 to zero. As each capacitor crosses a certain trigger voltage, the
 number of TV lines scanned is put in the respective pot value
 register. When the scan counter reaches 228, the capacitor dump
 transistors are turned on and the number 228 is put into any pot value
 registers which are still empty.

 Before reading the pot value registers, ALLPOT [$D208 (53768)] should
 be checked. In this register, each bit corresponds to the validity of
 a pot value register. If a bit is zero, its' associated pot value
 register is valid. If bit 2 of SKCTL, [$D20F (53775)], is 1, the pots
 go into the fast scan mode. In this mode the paddles are read in only
 2 TV scan lines. They can also be read without regard to POTGO or
 ALLPOT.

 The pot value registers contain the number of TV scan lines it last
 took for the paddle reading capacitors to charge (up to 228). These
 registers are POT0 - POT7 [$D200 - $D207 (53760 -53767)]. Their
 shadow registers are PADDL0 - PADDL7 [$0270 - $0277 (624 - 631)].

 THE LIGHT PEN REGISTERS

 Whenever a joystick trigger is pressed, the light pen registers, PENH
 and PENV are updated. PENH [$D40C (54284)] takes a value based on a
 color clock counter. The value can be from 0 to 227. PENV [$D40D
 [54285)] takes the 8 highest bits of the vertical line counter. A
 light pen is simply a photo transistor connected to a joystick trigger
 line and focused on the TV screen. When the electron beam strikes the
 part of the screen the light pen is focused on, the transistor turns
 on pulling the trigger line low. The light pen registers then contain
 numbers relative to where the light pen was pointing. The shadow
 register for PENH and PENV are LPENH [$0234 (564)] and LPENV [$0235
 (566)).

 Useful operating system equates

 TRIG0 $D010 (53264): joystick triggers
 |
 TRIG3 $D013 (53268):
 POT0 $D200 (53760): paddle value
 |
 POT7 $D207 (53767):
 ALLPOT $D208 (53768): reads validity of pot values
 POTGO $D20B (53771): starts paddle read
 SKCTL $D20F (53775): bit 2 enables fast pot scan
 PORTA $D300 (53016): port A data
 PORTB $D301 (53017): port B data

 PACTL $D302 (54018): port A control
 PBCTL $D303 (54019): port B control
 PENH $D40C (54284): light pen horizontal value
 PENV $D40D (54285): light pen vertical value

 Shadow registers

 LPENH $0234 (564): light pen horizontal value
 LPENV $0235 (566): light pen vertical value
 PADDL0 $0270 (624): game paddle values
 |
 PADDL7 $0277 (631)
 STICK0 $0278 (632): joystick registers
 |
 STICK0 $027B (635):
 PRTIG0 $027C (636): paddle triggers
 |
 PTRIG7 $0283 (643):
 STRIG0 $0284 (644): joystick triggers
 |
 STRIG3 $0287 (647):

 CHAPTER 19

 MISC HARDWARE REGISTERS AND INFORMATION

 VERTICAL LINE COUNTER

 The ANTIC chip has a vertical line counter at $0D4B (54283). This
 counter shows the high 8 bits of a 9 bit counter. This gives two line
 resolution. The value of this counter is placed into PENV [$D40D
 (54285)] when a joystick trigger is pressed.

 SERIAL PORT REGISTERS

 The POKEY chip has some registers which control the serial port.

 The serial port control register, SKCTL [$D20F (53775)], controls the
 serial port configuration and the game paddle scan mode. and some
 keyboard circuitry.

 The serial port control register

 7 6 5 4 3 2 1 0

 SKCTL | | | | | | | | |

 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 bits

 0 1 = enable keyboard debounce
 1 1 = enable keyboard scan
 both 0 = set initialization mode.
 2 1 = fast pot scan
 3 1 = serial output is two tone (for cassette)
 instead of logical true/false
 4\
 5 >- serial port mode control
 6/
 7 1 = forced logical 0 on output

 If the serial port control register is read from it gives the serial
 port status. The register is then called SKSTAT

 Serial port status register

 7 6 5 4 3 2 1 0

 | | | | | | | |1|

 1 6 3 1 8 4 2 1
 2 4 2 6

 8

 bits

 0 not used, reads 1
 1 0 = serial input shift register busy
 2 0 = last key is still pressed
 3 0 = shift key pressed
 4 0 = direct from serial input port
 5 0 = keyboard over-run
 6 0 = serial data input over-run
 7 1 = serial data input frame error

 The serial port status is latched and must be reset by writing any
 number to its' reset register, SKRES [$D20A (53770)].

 SERIAL PORT INPUT AND OUTPUT DATA

 When a full byte of serial input data has been received, it is read
 from the serial input data register, SERIN [$D20D (53773). Serial
 output data is written to the same register, which is then called the
 serial output data register, SEROUT. This register is usually written
 to in response to a serial output data interrupt (bit 4 of IRQST).

 HARDWARE CHIP MEMORY ALLOCATION

 The addresses for the hardware chips are not completely decoded. For
 example, the PIA needs only four bytes of memory but is active from
 $D300 - D3FF. Enough room for 64 PIA chips. A second pair of
 parallel ports could be added by accessing the address bus and further
 decoding the address for a second PIA. (This would also require a
 small modification of the computer's circuit board to disable the
 original PIA when the new one is active.) Similarly, there is room
 for 15 more POKEY or ANTIC chips and 7 gtia chips, should you ever
 need them. (GTIA uses $D000 - D0FF, POKEY uses $D200 - $D2FF and
 ANTIC uses $D400 - $D4FF.)

 Useful data base variables and OS equates

 SKRES $D20A (53770): serial port status reset
 SEROUT $D20D (53773): serial output data
 SERIN $D20D (53773): serial input data
 SKCTL $D20F (53775): serial port control
 SKSTAT $D20F (53775): serial port status
 VCOUNT $D40B (54283): vertical line counter

 Os shadow registers

 SSKCTL $0232 (562): SKCTL

 CHAPTER 20

 THE XL AND XE MODELS

 BASIC B BUGS

 Most of the Atari 600XL and 800XL models were supplied with the
 "debugged" version B of Atari BASIC. This new BASIC got rid of the
 minor bugs of BASIC A and introduced some new major bugs of it's own.

 Each time a program is saved, 16 extra bytes are tagged onto the end
 of the program. After many saves and reloads, as when developing a
 long program, the program becomes too large for the memory.

 The computer may lock up unpredictably.

 Program line links may get messed up, leaving garbage in the listing
 and the program unrunable.

 Large LISTed programs may not run unless SAVed and reLOADed.

 If the length of a listed program is a multiple of a certain number of
 bytes, it will not run unless the length is somehow changed.

 BASIC version B has been replaced by version C. All of the XE models
 have this truly debugged version of BASIC.

 NEW OPERATING SYSTEM PROBLEMS

 I have heard of only one bug in the operating system in XL and XE
 models. This is a mishandling of the printer timeout. The computer
 cannot tell if there is a printer attached or not. This may have been
 fixed in the XE models. However, many programs, some even formerly
 sold by Atari, do not jump through published jump vectors when using
 the operating system. These programs will not run on XL/XE models.
 (Some of these programs are Atari Word Processor (not Atariwriter) and
 LJKs Letter Perfect and Data Perfect.) Since the operating system ROM
 can be switched to RAM, a "translator" can be used to load the 800
 operating system into an XL or XE model.

 130XE MEMORY MANAGEMENT

 The 130XE has an extra 64K bank of memory. It is divided into four
 blocks of 16K each. Each block can be switched to replace part of the
 main bank of RAM from $4000 (16384) to $7FFF (32767). Furthermore, it
 can be switched in such a way that only the 6502, or the ANTIC chip
 can see the extra memory.

 Port B (formerly the two extra joystick ports of the 400/800) is used
 to manage the memory.

 Port B and memory management

 7 6 5 4 3 2 1 0

 PORTB |T|U|A|C|S S|B|R|

 1 6 3 1 8 4 2 1
 2 4 2 6
 8

 R 1 = OS replaced by RAM
 B 0 = BASIC enabled
 S S bank select bits
 C 0 = CPU sees switched RAM at $4000
 A 0 = ANTIC sees switched RAM
 U unused
 T 0 = self test

 Bits 2 and 3 of PORTB select which block of the extra bank of memory
 is switched in.

 Bank select bits

 bits block

 2 3 address

 0 0 $0000 - $3FFF
 0 1 $4000 - $7FFF
 1 0 $8000 - $BFFF
 1 1 $C000 - $FFFF

 Bits 4 and 5 select which chip sees the switched in RAM at $4000 -
 $7FFF

 Chip select bits

 bits ANTIC 6502

 4 5

 0 0 Ext. Ext.
 0 1 Ext. Main
 1 0 Main Ext.
 1 1 Main Main

 THE XL PARALLEL PORT

 Pin out of the parallel port

 top from rear

 111112222233333444445
 2468024680246802468024680

 11111222223333344444
 1357913579135791357913579

 1 2 GND
 3 A1 4 A0
 5 A3 6 A2
 7 A5 8 A4
 9 GND 10 A6
 11 A8 12 A7
 13 A10 14 A9
 15 A12 16 A11
 17 A14 18 A13
 19 A15 20 GND
 21 D1 22 D0
 23 D3 24 D2
 25 D5 26 D4
 27 D7 28 D6
 29 GND 30 GND
 31 GND 32 phase 2 clock
 33 RESET 34
 35 RDY 36 IRQ
 37 37
 39 40
 41 GND 42
 43 RAS 44
 45 R/W 46 GND
 47 +5V 48 +5V
 49 GND 50

 The phase 2 clock runs at 1.8 MHz. When the clock is high, the
 address and R/W lines are valid. The clock goes from high to low,
 when the data lines are also valid. All lines then become invalid.

 The 130XE doesn't have the parallel port. However, it has a cartridge
 slot expansion. This is a small cartridge-slot-like connector with
 the necessary connector to use parallel expansion.

 FINE SCROLLING

 If address $026E (622) is $FF, graphics 0 will be in the fine scroll
 mode.

 OTHER ADDRESSES

 DSCTLN [$0D25,2 (725)] is the disk sector size. should be $80 (128).

 DMASAV [$02DD (735)] is a copy of the DMA control register, SDMCTL
 [$022F (559)]. It is set up when a channel is opened to the screen.
 The value is moved to SDMCTL whenever a key is pressed. It is used to
 restore the display if DMA is disabled.

 PUPBT [$033D,3 (829-831)] is used to test memory integrity when
 [RESET] is pressed. If these bytes are not $5C, $93 and $25, the
 computer will do a cold start when [RESET] is pressed.

 The self-test ROM is from $D000 to $D7FF, the same addresses as the
 hardware registers. This part of the operating system ROM is disabled
 when not used. When The computer is put into the self-test mode, This
 part of ROM is copied to $5000 to $57FF and run from there.

 GINTLK [$03FA (1018)] is a logical 1 if a cartridge is installed
 (built-in BASIC is considered a cartridge). BASIC can be disabled by
 poking 1018 with a non-zero number. If [RESET] is then pressed, the
 computer will attempt to load the DUP.SYS file and basic will be
 completely disabled.

 APPENDIX A

 HARDWARE REGISTERS

 Register Shadow

 Name Description Address Name Address

 --

 ALLPOT game paddle ready indicators $D208 53768

 AUDC1 Audio channel 1 control $D201 53761

 AUDC2 Audio channel 2 control $D203 53763

 AUDC3 Audio channel 3 control $D205 53765

 AUDC4 Audio channel 1 control $D207 53767

 AUDCTL general audio control $D208 53768

 AUDF1 Audio frequency 1 control $D200 53760

 AUDF2 Audio frequency 2 control $D202 53762

 AUDF3 Audio frequency 3 control $D204 53764

 AUDF4 Audio frequency 4 control $D206 53766

 CHACTL character control $D401 54273 CHART $02F3 755

 CHBASE Address of character set / 256 $D409 54281 CHBAS $O2F4 756

 COLBK color/brightness of setcolor 4 $D01A 53274 COLOR4 $02C8 712

 COLPF0 Color/brightness of setcolor 0 $D016 53270 COLOR0 $02C4 708

 COLPF1 color/brightness of setcolor 1 $D017 53271 COLOR1 $02C5 709

 COLPF2 color/brightness of setcolor 2 $DO18 53272 COLOR2 $02C6 710

 COLPF3 color/brightness of setcolor 3 $DO19 53273 COLOR3 $02C7 711

 COLPM0 color/brightness, player/missile 0 $D012 53266 PCOLR0 $02C0 704

 COLPM1 color/brightness, player/missile 1 $DO13 53267 PCOLR1 $02C1 705

 COLPM2 color/brightness, player/missile 2 $DO14 53268 PCOLR2 $02C2 706

 COLPM3 color/brightness, player/missile 3 $DO15 53269 PCOLR3 $02C3 707

 CONSOL [START], [SELECT], [OPT.], speaker $D01F 53279

 DLISTH display list pointer high byte $D403 54275 SDLSTH $0231 561

 DLISTL display list pointer low byte $D402 54274 SDLSTL $0230 560

 DMACTL Direct Memory access control (DMA) $D400 54272 SDMCTL $022F 559

 GRACTL graphics control $D01D 53277

 GRAFM missile graphics $D011 53265

 GRAFP0 player 0 graphics $D00D 53261

 GRAFP1 player 1 graphics $D00E 53262

 GRAFP2 player 2 graphics $D00F 53263

 GRAFP3 player 3 graphics $D010 53264

 HITCLR clear collisions $D01E 54278

 HPOSM0 horizontal position of missile 0 $D004 53252

 HPOSM1 horizontal position of missile 1 $D005 53253

 HPOSM2 horizontal position of missile 2 $D006 53254

 HOPSM3 horizontal position of missile 3 $D007 53255

 HPOSP0 horizontal position of player 0 $D000 53248

 HPOSP1 horizontal position of player 1 $D001 53249

 HPOSP2 horizontal position of player 2 $D002 53250

 HPOSP3 horizontal position of player 3 $D003 53251

 HSCROL horizontal scroll $D404 54276

 IRQEN interrupt request enable (IRQ) $D20E 53774 POKMSK $0010 16

 IRQST IRQ status $D20E 53774

 KBCODE keyboard code $D209 53769 CH $O2FC 764

 M0PF missile 0 to graphics collisions $D000 53248

 M0PL missile 0 to player collisions $D008 53256

 M1PF missile 1 to graphics collisions $D001 53249

 M1PL missile 1 to player collisions $D009 53257

 M2PF missile 2 to graphics collisions $D002 53250

 M2PL missile 2 to player collisions $D00A 53258

 M3PF missile 3 to graphics collisions $D003 53251

 M3PL missile 3 to player collisions $D00B 53259

 NMIEN non-maskable interrupt enable (NMI)$D40E 54286

 NMIRES NMI reset $D40F 54287

 NMIST NMI status $D40F 54287

 P0PF player 0 to graphics collisions $D004 53252

 P0PL player 0 to player collisions $D00C 53260

 P1PF player 1 to graphics collisions $D005 53253

 P1PL player 1 to player collisions $D00D 53261

 P2PF player 2 to graphics collisions $D006 53254

 P2PL player 2 to player collisions $D00E 53262

 P3PF player 3 to graphics collisions $DOO7 53255

 P3PL player 3 to player collisions $D00F 53263

 PACTL port A control $D302 54018

 PAL Europe/North America TV indicator $D014 53268

 PBCLT port B control $D303 54019

 PENH light pen horizontal position $D40C 54284 LPENH $0234 564

 PENV light pen vertical position $D40D 54285 LPENV $0235 565

 PMBASE player/missile address / 256 $D407 54279

 PORTA port A $D300 54016 STICK0 $0278 632

 STICK1 $0279 634

 PORTB port B $D301 54017 STICK2 $027A 634

 STICK3 $027B 635

 POT0 game paddle 0 $D200 53760 PADDL0 $0270 624

 POT1 game paddle 1 $D201 53761 PADDL1 $0271 625

 POT2 game paddle 2 $D202 53762 PADDL2 $0272 626

 POT3 game paddle 3 $D203 53763 PADDL3 $0273 627

 POT4 game paddle 4 $D204 53764 PADDL4 $0274 628

 POT5 game paddle 5 $D205 53765 PADDL5 $0275 629

 POT6 game paddle 6 $D206 53766 PADDL6 $0276 630

 POT7 game paddle 7 $D207 53767 PADDL7 $0277 631

 POTGO start pot scan sequence $D20B 53771

 PRIOR p/m priority and GTIA mode $D21B 53275 GPRIOR $026F 623

 RANDOM random number generator $D20A 53770

 SERIN serial port input $D20D 53774

 SEROUT serial port output $D20D 53773

 SIZEM missile size $D00C 53260

 SIZEP0 player 0 size $D008 53256

 SIZEP1 player 1 size $D009 53257

 SIZEP2 player 2 size $D00A 53258

 SIZEP3 player 3 size $D00B 53259

 SKCTL serial port control $D20F 53775 SSKCTL $0232 563

 SKREST reset serial port status $D20A 53770

 SKSTAT serial port status $D20F 53775

 STIMER start timer $D209 53769

 TRIG0 joystick trigger 0 $D010 53264 STRIG0 $0284 644

 TRIG1 joystick trigger 1 $D011 53265 STRIG1 $0285 645

 TRIG2 joystick trigger 2 $D012 53266 STRIG2 $0286 646

 TRIG3 joystick trigger 3 $D013 53267 STRIG3 $0287 647

 VCOUNT vertical line counter $D40B 54283

 VDELAY vertical delay $D01C 54276

 VSCROL vertical scroll $D405 54277

 WSYNC wait for horizontal sync $D40A 54282

 NUMERICAL ORDER

 Registers sharing addresses are listed first when writen to, then when

 read from

 Register Shadow

 Name Description Address Name Address

 --

 HPOSP0 horizontal position of player 0 $D000 53248

 M0PF missile 0 to graphics collisions $D000 53248

 HPOSP1 horizontal position of player 1 $D001 53249

 M1PF missile 1 to graphics collisions $D001 53249

 HPOSP2 horizontal position of player 2 $D002 53250

 M2PF missile 2 to graphics collisions $D002 53250

 HPOSP3 horizontal position of player 3
 $D003 53251

 M3PF missile 3 to graphics collisions $D003 53251

 HPOSM0 horizontal position of missile 0 $D004 53252

 P0PF player 0 to graphics collisions $D004 53252

 HPOSM1 horizontal position of missile 1 $D005 53253

 P1PF player 1 to graphics collisions $D005 53253

 HPOSM2 horizontal position of missile 2 $D006 53254

 P2PF player 2 to graphics collisions $D006 53254

 HOPSM3 horizontal position of missile 3 $D007 53255

 P3PF player 3 to graphics collisions $D007 53255

 SIZEP0 player 0 size $D008 53256

 M0PL missile 0 to player collisions $D008 53256

 SIZEP1 player 1 size $D009 53257

 M1PL missile 1 to player collisions $D009 53257

 SIZEP2 player 2 size $D00A 53258

 M2PL missile 2 to player collisions $D00A 53258

 SIZEP3 player 3 size $D00B 53259

 M3PL missile 3 to player collisions $D00B 53259

 SIZEM missile size $D00C 53260

 P0PL player 0 to player collisions $D00C 53260

 GRAFP0 player 0 graphics $D00D 53261

 P1PL player 1 to player collisions $D00D 53261

 GRAFP1 player 1 graphics $D00E 53262

 P2PL player 2 to player collisions $D00E 53262

 GRAFP2 player 2 graphics $D00F 53263

 P3PL player 3 to player collisions $D00F 53263

 GRAFP3 player 3 graphics $D010 53264

 TRIG0 joystick trigger 0 $D010 53264 STRIG0 $0284 644

 GRAFM missile graphics $D011 53265

 TRIG1 joystick trigger 1 $D011 53265 STRIG1 $0285 645

 COLPM0 color/brightness, player/missile 0 $D012 53266 PCOLR0 $02C0 704

 TRIG2 joystick trigger 2 $D012 53266 STRIG2 $0286 646

 COLPM1 color/brightness, player/missile 1 $D013 53267 PCOLR1 $02C1 705

 TRIG3 joystick trigger 3 $D013 53267 STRIG3 $0287 647

 COLPM2 color/brightness, player/missile 2 $D014 53268 PCOLR2 $02C2 706

 PAL Europe/North America TV indicator $D014 53268

 COLPM3 color/brightness, player/missile 3 $D015 53269 PCOLR3 $02C3 707

 COLPF0 Color/brightness of setcolor 0 $D016 53270 COLOR0 $02C4 708

 COLPF1 color/brightness of setcolor 1 $D017 53271 COLOR1 $02C5 709

 COLPF2 color/brightness of setcolor 2 $D018 53272 COLOR2 $02C6 710

 COLPF3 color/brightness of setcolor 3 $D019 53273 COLOR3 $02C7 711

 COLBK color/brightness of setcolor 4 $D01A 53274 COLOR4 $02C8 712

 VDELAY vertical delay $D01C 54276

 GRACTL graphics control $D01D 53277

 HITCLR clear collisions $D01E 54278

 CONSOL [START], [SELECT], [OPT.], speaker $D01F 53279

 AUDF1 Audio frequency 1 control $D200 53760

 POT0 game paddle 0 $D200 53760 PADDL0 $0270 624

 AUDC1 Audio channel 1 control $D201 53761

 POT1 game paddle 1 $D201 53761 PADDL1 $0271 625

 AUDF2 Audio frequency 2 control $D202 53762

 POT2 game paddle 2 $D202 53762 PADDL2 $0272 626

 AUDC2 Audio channel 2 control $D203 53763

 POT3 game paddle 3 $D203 53763 PADDL3 $0273 627

 AUDF3 Audio frequency 3 control $D204 53764

 POT4 game paddle 4 $D204 53764 PADDL4 $0274 628

 AUDC3 Audio channel 3 control $D205 53765

 POT5 game paddle 5 $D205 53765 PADDL5 $0275 629

 AUDF4 Audio frequency 4 control $D206 53766

 POT6 game paddle 6 $D206 53766 PADDL6 $0276 630

 AUDC4 Audio channel 1 control $D207 53767

 POT7 game paddle 7 $D207 53767 PADDL7 $0277 631

 ALLPOT game paddle ready indicators $D208 53768

 AUDCTL general audio control $D208 53768

 KBCODE keyboard code $D209 53769 CH $O2FC 764

 STIMER start timer $D209 53769

 RANDOM random number generator $D20A 53770

 SKREST reset serial port status $D20A 53770

 POTGO start pot scan sequence $D20B 53771

 SEROUT serial port output $D20D 53773

 SERIN serial port input $D20D 53774

 IRQEN interrupt request enable (IRQ) $D20E 53774 POKMSK $0010 16

 IRQST IRQ status $D20E 53774

 SKCTL serial port control $D20F 53775 SSKCTL $0232 563

 SKSTAT serial port status $D20F 53775

 PRIOR p/m priority and GTIA mode $D21B 53275 GPRIOR $026F 623

 PORTA port A $D300 54016 STICK0 $0278 632

 STICK1 $0279 633

 PORTB port B $D301 54017 STICK2 $027A 634

 STICK3 $027B 635

 PACTL port A control $D302 54018

 PBCTL port B control $D303 54019

 DMACTL Direct Memory access control (DMA) $D400 54272 SDMCTL $022F 559

 CHACTL character control $D401 54273 CHART $02F3 755

 DLISTL display list pointer low byte $D402 54274 SDLSTL $0230 560

 DLISTH display list pointer high byte $D403 54275 SDLSTH $0231 561

 HSCROL horizontal scroll $D404 54276

 VSCROL vertical scroll $D405 54277

 PMBASE player/missile address / 256 $D407 54279

 CHBASE Address of character set / 256 $D409 54281 CHBAS $O2F4 756

 WSYNC wait for horizontal sync $D40A 54282

 VCOUNT vertical line counter $D40B 54283

 PENH light pen horizontal position $D40C 54284 LPENH $0234 564

 PENV light pen vertical position $D40D 54285 LPENV $0235 565

 NMIEN non-maskable interrupt enable (NMI)$D40E 54286

 NMIRES NMI reset $D40F 54287

 NMIST NMI status $D40F 54287

 SHADOW REGISTER ORDER

 ALPHEBETICAL ORDER

 Register Shadow

 Name Description Address Name Address

 --
 KBCODE keyboard code $D209 53769 CH $O2FC 764

 CHACTL character control $D401 54273 CHART $02F3 755

 CHBASE Address of character set / 256 $D409 54281 CHBAS $O2F4 756

 COLBK color/brightness of setcolor 4 $D01A 53274 COLOR4 $02C8 712

 COLPF0 Color/brightness of setcolor 0 $D016 53270 COLOR0 $02C4 708

 COLPF1 color/brightness of setcolor 1 $D017 53271 COLOR1 $02C5 709

 COLPF2 color/brightness of setcolor 2 $D018 53272 COLOR2 $02C6 710

 COLPF3 color/brightness of setcolor 3 $D019 53273 COLOR3 $02C7 711

 PRIOR p/m priority and GTIA mode $D21B 53275 GPRIOR $026F 623

 PENH light pen horizontal position $D40C 54284 LPENH $0234 564

 PENV light pen vertical position $D40D 54285 LPENV $0235 565

 POT0 game paddle 0 $D200 53760 PADDL0 $0270 624

 POT1 game paddle 1 $D201 53761 PADDL1 $0271 625

 POT2 game paddle 2 $D202 53762 PADDL2 $0272 626

 POT3 game paddle 3 $D203 53763 PADDL3 $0273 627

 POT4 game paddle 4 $D204 53764 PADDL4 $0274 628

 POT5 game paddle 5 $D205 53765 PADDL5 $0275 629

 POT6 game paddle 6 $D206 53766 PADDL6 $0276 630

 POT7 game paddle 7 $D207 53767 PADDL7 $0277 631

 COLPM0 color/brightness, player/missile 0 $D012 53266 PCOLR0 $02C0 704

 COLPM1 color/brightness, player/missile 1 $D013 53267 PCOLR1 $02C1 705

 COLPM2 color/brightness, player/missile 2 $D014 53268 PCOLR2 $02C2 706

 COLPM3 color/brightness, player/missile 3 $D015 53269 PCOLR3 $02C3 707

 IRQEN interrupt request enable (IRQ) $D20E 53774 POKMSK $0010 16

 DLISTH display list pointer high byte $D403 54275 SDLSTH $0231 561

 DLISTL display list pointer low byte $D402 54274 SDLSTL $0230 560

 DMACTL Direct Memory access control (DMA) $D400 54272 SDMCTL $022F 559

 SKCTL serial port control $D20F 53775 SSKCTL $0232 563

 PORTA port A $D300 54016 STICK0 $0278 632

 STICK1 $0279 633

 PORTB port B $D301 54017 STICK2 $027A 634

 STICK3 $027B 635

 TRIG0 joystick trigger 0 $D010 53264 STRIG0 $0284 644

 TRIG1 joystick trigger 1 $D011 53265 STRIG1 $0285 645

 TRIG2 joystick trigger 2 $D012 53266 STRIG2 $0286 646

 TRIG3 joystick trigger 3 $D013 53267 STRIG3 $0287 647

 NUMERICAL ORDER

 IRQEN interrupt request enable (IRQ) $D20E 53774 POKMSK $0010 16

 DMACTL Direct Memory access control (DMA) $D400 54272 SDMCTL $022F 559

 DLISTL display list pointer low byte $D402 54274 SDLSTL $0230 560

 DLISTH display list pointer high byte $D403 54275 SDLSTH $0231 561

 SKCTL serial port control $D20F 53775 SSKCTL $0232 563

 PENH light pen horizontal position $D40C 54284 LPENH $0234 564

 PENV light pen vertical position $D40D 54285 LPENV $0235 565

 PRIOR p/m priority and GTIA mode $D21B 53275 GPRIOR $026F 623

 POT0 game paddle 0 $D200 53760 PADDL0 $0270 624

 POT1 game paddle 1 $D201 53761 PADDL1 $0271 625

 POT2 game paddle 2 $D202 53762 PADDL2 $0272 626

 POT3 game paddle 3 $D203 53763 PADDL3 $0273 627

 POT4 game paddle 4 $D204 53764 PADDL4 $0274 628

 POT5 game paddle 5 $D205 53765 PADDL5 $0275 629

 POT6 game paddle 6 $D206 53766 PADDL6 $0276 630

 POT7 game paddle 7 $D207 53767 PADDL7 $0277 631

 PORTA port A $D300 54016 STICK0 $0278 632

 STICK1 $0279 633

 PORTB port B $D301 54017 STICK2 $027A 634

 STICK3 $027B 635

 TRIG0 joystick trigger 0 $D010 53264 STRIG0 $0284 644

 TRIG1 joystick trigger 1 $D011 53265 STRIG1 $0285 645

 TRIG2 joystick trigger 2 $D012 53266 STRIG2 $0286 646

 TRIG3 joystick trigger 3 $D013 53267 STRIG3 $0287 647

 COLPM0 color/brightness, player/missile 0 $D012 53266 PCOLR0 $02C0 704

 COLPM1 color/brightness, player/missile 1 $D013 53267 PCOLR1 $02C1 705

 COLPM2 color/brightness, player/missile 2 $D014 53268 PCOLR2 $02C2 706

 COLPM3 color/brightness, player/missile 3 $D015 53269 PCOLR3 $02C3 707

 COLPF0 Color/brightness of setcolor 0 $D016 53270 COLOR0 $02C4 708

 COLPF1 color/brightness of setcolor 1 $D017 53271 COLOR1 $02C5 709

 COLPF2 color/brightness of setcolor 2 $D018 53272 COLOR2 $02C6 710

 COLPF3 color/brightness of setcolor 3 $D019 53273 COLOR3 $02C7 711

 COLBK color/brightness of setcolor 4 $D01A 53274 COLOR4 $02C8 712

 CHACTL character control $D401 54273 CHART $02F3 755

 CHBASE Address of character set / 256 $D409 54281 CHBAS $O2F4 756

 KBCODE keyboard code $D209 53769 CH $O2FC 764

 APPENDIX B

 OPERATING SYSTEM EQUATES

 0100 ;
 0101 ; ATARI 800 EQUATE LISTING
 0102 ;
 0103 ;
 0104 ;
 0105 ;This listing is based on the original release of Operating System,
 0106 ;version A. The vectors shown here were not changed in version B.
 0107 ;New equates for XL and XE models are included and noted. Changes
 0108 ;from version B to XL/XE are also noted.
 0109 ;
 0110 ;Most of the equate names given below are the official Atari
 0111 ;names. They are in common use but are not mandatory.
 0112 ;
 0113 ;
 0114 ; DEVICE NAMES
 0115 ;
 0116 ;
 0117 ;SCREDT = "E" SCREEN EDITOR
 0118 ;KBD = "K" KEYBOARD
 0119 ;DISPLY = "S" DISPLAY
 0120 ;PRINTR = "P" PRINTER
 0121 ;CASSET = "C" CASSETTE
 0122 ;DISK = "D" DISK DRIVE
 0123 ;
 0124 ;
 0125 ;
 0126 ; STATUS CODES
 0127 ;
 0128 ;
 0129 SUCCES = $01 1
 0130 BRKABT = $80 128 BREAK KEY ABORT
 0131 PRVOPN = $82 130 IOCB ALREADY OPEN
 0132 NONDEV = $82 130 NONEXISTANT DEVICE
 0133 WRONLY = $83 131 OPENED FOR WRITE ONLY
 0134 NVALID = $84 132 INVALID COMMAND
 0135 NOTOPN = $85 133 DEVICE OR FILE NOT OPEN
 0136 BADIOC = $86 134 INVALID IOCB NUMBER
 0137 RDONLY = $87 135 OPENED FOR READ ONLY
 0138 EOFERR = $88 136 END OF FILE
 0139 TRNRCD = $89 137 TRUNCATED RECORD
 0140 TIMOUT = $8A 138 PERIPHERAL TIME OUT
 0141 DNACK = $8B 139 DEVICE DOES NOT ACKNOWLEDGE
 0142 FRMERR = $8C 140 SERIAL BUS FRAMING ERROR
 0143 CRSROR = $8D 141 CURSOR OUT OF RANGE
 0144 OVRRUN = $8E 142 SERIAL BUS DATA OVERRUN
 0145 CHKERR = $8F 143 SERIAL BUS CHECKSUM ERROR
 0146 DERROR = $90 144 PERIPHERAL DEVICE ERROR
 0147 BADMOD = $91 145 NON EXISTANT SCREEN MODE
 0148 FNCNOT = $92 146 FUNCTION NOT IMPLEMENTED
 0149 SCRMEM = $93 147 NOT ENOUGH MEMORY FOR SCREEN MODE

 0150 ;
 0151 ;
 0152 ;
 0153 ;
 0154 ; COMMAND CODES FOR CIO
 0155 ;
 0156 ;
 0157 OPEN = $03 3
 0158 OPREAD = $04 4 OPEN FOR INPUT
 0159 GETREC = $05 5 GET RECORD
 0160 OPDIR = $06 6 OPEN TO DISK DIRECTORY
 0161 GETCHR = $07 7 GET BYTE
 0162 OWRITE = $08 8 OPEN FOR OUTPUT
 0163 PUTREC = $09 9 WRITE RECORD
 0164 APPEND = $09 9 OPEN TO APPEND TO END OF DISK FILE
 0165 MXDMOD = $10 16 OPEN TO SPLIT SCREEN (MIXED MODE)
 0166 PUTCHR = $0B 11 PUT-BYTE
 0167 CLOSE = $0C 12
 0168 OUPDAT = $0C 12 OPEN FOR INPUT AND OUTPUT AT THE SAME TIME
 0169 STATUS = $0D 13
 0170 SPECIL = $0E 14 BEGINNING OF SPECIAL COMMANDS
 0171 DRAWLN = $11 17 SCREEN DRAW
 0172 FILLIN = $12 18 SCREEN FILL
 0173 RENAME = $20 32
 0174 INSCLR = $20 32 OPEN TO SCREEN BUT DON'T ERASE
 0175 DELETE = $21 33
 0176 DFRMAT = $21 33 FORMAT DISK (RESIDENT DISK HANDLER (RDH))
 0177 LOCK = $23 35
 0178 UNLOCK = $24 36
 0179 POINT = $25 37
 0180 NOTE = $26 38
 0181 PTSECT = $50 80 RDH PUT SECTOR
 0182 GTSECT = $52 82 RDH GET SECTOR
 0183 DSTAT = $53 83 RDH GET STATUS
 0184 PSECTV = $57 87 RDH PUT SECTOR AND VERIFY
 0185 NOIRG = $80 128 NO GAP CASSETTE MODE
 0186 CR = $9B 155 CARRIAGE RETURN (EOL)
 0187 ;
 0188 IOCBSZ = $10 16 IOCB SIZE
 0189 MAXIOC = $80 128 MAX IOCB BLOCK SIZE
 0190 IOCBF = $FF 255 IOCB FREE
 0191 ;
 0192 LEDGE = $02 2 DEFAULT LEFT MARGIN
 0193 REDGE = $27 39 DEFAULT RIGHT MARGIN
 0194 ;
 0195 ; OS VARIABLES
 0196 ;
 0197 ; PAGE 0
 0198 ;
 0199 LINZBS = $00 0 (800) FOR ORIGINAL DEBUGGER
 0200 ; $00 0 (XL) RESERVED
 0201 NGFLAG = $01 1 (XL) FOR POWER-UP SELF TEST
 0202 CASINI = $02 2
 0203 RAMLO = $04 4 POINTER FOR SELF TEST
 0204 TRAMSZ = $06 6 TEMPORARY RAM SIZE
 0205 TSTDAT = $07 7 TEST DATA
 0206 WARMST = $08 8

 0207 BOOT? = $09 9 SUCCESSFUL BOOT FLAG
 0208 DOSVEC = $0A 10 PROGRAM RUN VECTOR
 0209 DOSINI = $0C 12 PROGRAM INITIALIZATION
 0210 APPMHI = $0E 14 DISPLAY LOW LIMIT
 0211 POKMSK = $10 16 IRQ ENABLE FLAGS
 0212 BRKKEY = $11 17 FLAG
 0213 RTCLOK = $12 18 3 BYTES, MSB FIRST
 0214 BUFADR = $15 21 INDIRECT BUFFER ADDRESS
 0215 ICCOMT = $17 23 COMMAND FOR VECTOR
 0216 DSKFMS = $18 24 DISK FILE MANAGER POINTER
 0217 DSKUTL = $1A 26 DISK UTILITY POINTER (DUP.SYS)
 0218 PTIMOT = $1C 28 (800) PRINTER TIME OUT REGISTER
 0219 ABUFPT = $1C 28 (XL) RESERVED
 0220 PBPNT = $1D 29 (800) PRINTER BUFFER POINTER
 0221 ; $1D 29 (XL) RESERVED
 0222 PBUFSZ = $1E 30 (800) PRINTER BUFFER SIZE
 0223 ; $1E 30 (XL) RESERVED
 0224 PTEMP = $1F 31 (800) TEMPORARY REGISTER
 0225 ; $1F 31 (XL) RESERVED
 0226 ZIOCB = $20 32 ZERO PAGE IOCB
 0227 ICHIDZ = $20 32 HANDLER INDEX NUMBER (ID)
 0228 ICDNOZ = $21 33 DEVICE NUMBER
 0229 ICCOMZ = $22 34 COMMAND
 0230 ICSTAZ = $23 35 STATUS
 0231 ICBALZ = $24 36 BUFFER POINTER LOW BYTE
 0232 ICBAHZ = $25 37 BUFFER POINTER HIGH BYTE
 0233 ICPTLZ = $26 38 PUT ROUTINE POINTER LOW
 0234 ICPTHZ = $27 39 PUT ROUTINE POINTER HIGH
 0235 ICBLLZ = $28 40 BUFFER LENGTH LOW
 0236 ICBLHZ = $29 41
 0237 ICAX1Z = $2A 42 AUXILIARY INFORMATION BYTE 1
 0238 ICAX2Z = $2B 43
 0239 ICSPRZ = $2C 44 TWO SPARE BYTES (CIO USE)
 0240 ICIDNO = $2E 46 IOCB NUMBER X 16
 0241 CIOCHR = $2F 47 CHARACTER BYTE FOR CURRENT OPERATION
 0242 ;
 0243 STATUS = $30 48 STATUS STORAGE
 0244 CHKSUM = $31 49 SUM WITH CARRY ADDED BACK
 0245 BUFRLO = $32 50 DATA BUFFER LOW BYTE
 0246 BUFRHI = $33 51
 0247 BFENLO = $34 52 ADDRESS OF LAST BUFFER BYTE +1 (LOW)
 0248 BFENHI = $35 53
 0249 CRETRY = $36 54 (800) NUMBER OF COMMAND FRAME RETRIES
 0250 LTEMP = $36 54 (XL) LOADER TEMPORARY STORAGE, 2 BYTES
 0251 DRETRY = $37 55 (800) DEVICE RETRIES
 0252 BUFRFL = $38 56 BUFFER FULL FLAG
 0253 RECVDN = $39 57 RECEIVE DONE FLAG
 0254 XMTDON = $3A 58 TRANSMISSION DONE FLAG
 0255 CHKSNT = $3B 59 CHECKSUM-SENT FLAG
 0256 NOCKSM = $3C 60 CHECKSUM-DOES-NOT-FOLLOW-DATA FLAG
 0257 BPTR = $3D 61
 0258 FTYPE = $3E 62
 0259 FEOF = $3F 63
 0260 FREQ = $40 64
 0261 ;
 0262 SOUNDR = $41 65 0=QUIET I/O
 0263 CRITIC = $42 66 CRITICAL FUNCTION FLAG, NO DEFFERED VBI

 0264 FMSZPG = $43 67 DOS ZERO PAGE, 7 BYTES
 0265 CKEY = $4A 74 (800) START KEY FLAG
 0266 ZCHAIN = $4A 74 (XL) HANDLER LOADER TEMP, 2 BYTES
 0267 CASSBT = $4B 75 (800) CASSETTE BOOT FLAG
 0268 DSTAT = $4C 76 DISPLAY STATUS
 0269 ;
 0270 ATRACT = $4D 77
 0271 DRKMSK = $4E 78 ATTRACT MASK
 0272 COLRSH = $4F 79 ATTRACT COLOR SHIFTER (EORed WITH
 GRAPHICS)
 0273 ;
 0274 TMPCHR = $50 80
 0275 HOLD1 = $51 81
 0276 LMARGN = $52 82 SCREEN LEFT MARGIN REGISTER
 0277 RMARGN = $53 83 SCREEN RIGHT MARGIN
 0278 ROWCRS = $54 84 CURSOR ROW
 0279 COLCRS = $55 85 CURSOR COLUMN, 2 BYTES
 0280 DINDEX = $57 87 DISPLAY MODE
 0281 SAVMSC = $58 88 SCREEN ADDRESS
 0282 OLDROW = $5A 90 CURSOR BEFORE DRAW OR FILL
 0283 OLDCOL = $5B 91
 0284 OLDCHR = $5D 93 DATA UNDER CURSOR
 0285 OLDADR = $5E 94 CURSOR ADDRESS
 0286 NEWROW = $60 96 (800) DRAWTO DESTINATION
 0287 FKDEF = $60 96 (XL) FUNCTION KEY DEFINATION POINTER
 0288 NEWCOL = $61 97 (800) DRAWTO DESTINATION, 2 BYTES
 0289 PALNTS = $62 98 (XL) EUROPE/NORTH AMERICA TV FLAG
 0290 LOGCOL = $63 99 LOGICAL LINE COLUMN POINTER
 0291 MLTTMP = $66 102
 0292 OPNTMP = $66 102 TEMPORARY STORAGE FOR CHANNEL OPEN
 0293 SAVADR = $68 104
 0294 RAMTOP = $6A 106 START OF ROM (END OF RAM + 1), HIGH BYTE
 ONLY
 0295 BUFCNT = $6B 107 BUFFER COUNT
 0296 BUFSTR = $6C 108 POINTER USED BY EDITOR
 0297 BITMSK = $6E 110 POINTER USED BY EDITOR
 0298 SHFAMT = $6F 111
 0299 ROWAC = $70 112
 0300 COLAC = $72 114
 0301 ENDPT = $74 116
 0302 DELTAR = $76 118
 0303 DELTAC = $77 119
 0304 ROWINC = $79 121 (800)
 0305 KEYDEF = $79 121 (XL) KEY DEFINATION POINTER, 2 BYTES
 0306 COLINC = $7A 122 (800)
 0307 SWPFLG = $7B 123 NON 0 IF TEXT AND REGULAR RAM IS SWAPPED
 0308 HOLDCH = $7C 124 CH MOVED HERE BEFORE CTRL AND SHIFT
 0309 INSDAT = $7D 125
 0310 COUNTR = $7E 126
 0311 ;
 0312 ZROFRE = $80 128 FREE ZERO PAGE, 84 BYTES
 0313 FPZRO = $D4 212 FLOATING POINT RAM, 43 BYTES
 0314 FR0 = $D4 212 FP REGISTER 0
 0315 FRE = $DA 218
 0316 FR1 = $E0 224 FP REGISTER 1
 0317 FR2 = $E6 230 FP REGISTER 2
 0318 FRX = $EC 236 SPARE

 0319 EEXP = $ED 237 VALUE OF E
 0320 NSIGN = $ED 237 SIGN OF FP NUMBER

 0321 ESIGN = $EF 239 SIGN OF FP EXPONENT
 0322 FCHFLG = $F0 240 FIRST CHARACTER FLAG
 0323 DIGRT = $F1 241 NUMBER OF DIGITS RIGHT OF DECIMAL POINT
 0324 CIX = $F2 242 INPUT INDEX
 0325 INBUFF = $F3 243 POINTER TO ASCII FP NUMBER
 0326 ZTEMP1 = $F5 245
 0327 ZTEMP4 = $F7 247
 0328 ZTEMP3 = $F9 249
 0329 DEGFLG = $FB 251
 0330 RADFLG = $FB 251 0=RADIANS, 6=DEGREES
 0331 FLPTR = $FC 252 POINTER TO BCD FP NUMBER
 0332 FPTR2 = $FE 254
 0333 ;
 0334 ;
 0335 ; PAGE 1
 0336 ;
 0337 ; 65O2 STACK
 0338 ;
 0339 ;
 0340 ;
 0341 ;
 0342 ; PAGE 2
 0343 ;
 0344 ;
 0345 INTABS = $0200 512 INTERRUPT RAM
 0346 VDSLST = $0200 512 NMI VECTOR
 0347 VPRCED = $0202 514 PROCEED LINE IRQ VECTOR
 0348 VINTER = $0204 516 INTERRUPT LINE IRQ VECTOR
 0349 VBREAK = $0206 518
 0350 VKEYBD = $0208 520
 0351 VSERIN = $020A 522 SERIAL INPUT READY IRQ
 0352 VSEROR = $020C 524 SERIAL OUTPUT READY IRQ
 0353 VSEROC = $020E 526 SERIAL OUTPUT COMPLETE IRQ
 0354 VTIMR1 = $0210 528 TIMER 1 IRQ
 0355 VTIMR2 = $0212 530 TIMER 2 IRQ
 0356 VTIMR4 = $0214 532 TIMER 4 IRQ
 0357 VIMIRQ = $0216 534 IRQ VECTOR
 0358 CDTMV1 = $0218 536 DOWN TIMER 1
 0359 CDTMV2 = $021A 538 DOWN TIMER 2
 0360 CDTMV3 = $021C 540 DOWN TIMER 3
 0361 CDTMV4 = $021E 542 DOWN TIMER 4
 0362 CDTMV5 = $0220 544 DOWN TIMER 5
 0363 VVBLKI = $0222 546
 0364 VVBLKD = $0224 548
 0365 CDTMA1 = $0226 550 DOWN TIMER 1 JSR ADDRESS
 0366 CDTMA2 = $0228 552 DOWN TIMER 2 JSR ADDRESS
 0367 CDTMF3 = $022A 554 DOWN TIMER 3 FLAG
 0368 SRTIMR = $022B 555 REPEAT TIMER
 0369 CDTMF4 = $022C 556 DOWN TIMER 4 FLAG
 0370 INTEMP = $022D 557 IAN'S TEMP
 0371 CDTMF5 = $022E 558 DOWN TIMER FLAG 5
 0372 SDMCTL = $022F 559 DMACTL SHADOW
 0373 SDLSTL = $0230 560 DISPLAY LIST POINTER
 0374 SSKCTL = $0232 562 SKCTL SHADOW

 0375 ; $0233 563 (800) UNLISTED
 0376 LCOUNT = $0233 563 (XL) LOADER TEMP
 0377 LPENH = $0234 564 LIGHT PEN HORIZONTAL
 0378 LPENV = $0235 565 LIGHT PEN VERTICAL
 0379 ; $0236 566 2 SPARE BYTES
 0380 ; $0238 568 (800) SPARE, 2 BYTES
 0381 RELADR = $0238 568 (XL) LOADER
 0382 CDEVIC = $023A 570 DEVICE COMMAND FRAME BUFFER
 0383 CAUX1 = $023C 572 DEVICE COMMAND AUX 1
 0384 CAUX2 = $023D 573 DEVICE COMMAND AUX 2
 0385 TEMP = $023E 574 TEMPORARY STORAGE
 0386 ERRFLG = $023F 575 DEVICE ERROR FLAG (EXCEPT TIMEOUT)
 0387 DFLAGS = $0240 576 FLAGS FROM DISK SECTOR 1
 0388 DBSECT = $0241 577 NUMBER OF BOOT DISK SECTORS
 0389 BOOTAD = $0242 578 BOOT LOAD ADDRESS POINTER
 0390 COLDST = $0244 580 COLD START FLAG, 1 = COLD START IN
 PROGRESS
 0391 ; $0245 581 (800) SPARE
 0392 RECLEN = $0245 581 (XL) LOADER
 0393 DSKTIM = $0246 582 (800) DISK TIME OUT REGISTER
 0394 ; $0246 582 (XL) RESERVED, 39 BYTES
 0395 LINBUF = $0247 583 (800) CHARACTER LINE BUFFER, 40 BYTES
 0396 CHSALT = $026B 619 (XL) CHARACTER SET POINTER
 0397 VSFLAG = $026C 620 (XL) FINE SCROLL TEMPORARY
 0398 KEYDIS = $026D 621 (XL) KEYBOARD DISABLE
 0399 FINE = $026E 622 (XL) FINE SCROLL FLAG
 0400 GPRIOR = $026F 623 P/M PRIORITY AND GTIA MODES
 0401 GTIA = $026F 623
 0402 PADDL0 = $0270 624 (XL) 3 MORE PADDLES, (800) 6 MORE PADDLES
 0403 STICK0 = $0278 632 (XL) 1 MORE STICK, (800) 3 MORE STICKS
 0404 PTRIG0 = $027C 636 (XL) 3 MORE PADDLE TRIGGERS, (800) 6 MORE
 0405 STRIG0 = $0284 644 (XL) 1 MORE STICK TRIGGER, (800) 3 MORE
 0406 CSTAT = $0288 648 (800)
 0407 WMODE = $0289 649
 0408 BLIM = $028A 650
 0409 ; $028B 651 5 SPARE BYTES
 0410 NEWADR = $028E 654 (XL) LOADER RAM
 0411 TXTROW = $0290 656
 0412 TXTCOL = $0291 657
 0413 TINDEX = $0293 659 TEXT INDEX
 0414 TXTMSC = $0294 660
 0415 TXTOLD = $0296 662 OLD ROW AND OLD COL FOR TEXT, 2 BYTES
 0416 ; $0298 664 4 SPARE BYTES
 0417 TMPX1 = $029C 668 (800)
 0418 CRETRY = $029C 668 (XL) NUMBER OF COMMAND FRAME RETRIES
 0419 SUBTMP = $029E 670
 0420 HOLD2 = $029F 671
 0421 DMASK = $02A0 672
 0422 TMPLBT = $02A1 673
 0423 ESCFLG = $02A2 674
 0424 TABMAP = $02A3 675 15 BYTE BIT MAP FOR TAB SETTINGS
 0425 LOGMAP = $02B2 690 4 BYTE LOGICAL LINE START BIT MAP
 0426 INVFLG = $02B6 694
 0427 FILFLG = $02B7 695 FILL DIRING DRAW FLAG
 0428 TMPROW = $02B8 696
 0429 TMPCOL = $02B9 697
 0430 SCRFLG = $02BB 699 SCROLL FLAG

 0431 HOLD4 = $02BC 700
 0432 HOLD5 = $02BD 701 (800)
 0433 DRETRY = $02BD 701 (XL) NUMBER OF DEVICE RETRIES
 0434 SHFLOC = $02BE 702
 0435 BOTSCR = $02BF 703 24 NORM, 4 SPLIT
 0436 PCOLR0 = $02C0 704 3 MORE PLAYER COLOR REGISTERS
 0437 COLOR0 = $02C4 708 4 MORE GRAPHICS COLOR REGISTERS
 0438 ; $02C9 713 (800) 23 SPARE BYTES
 0439 RUNADR = $02C9 713 (XL) LOADER VECTOR
 0440 HIUSED = $02CB 715 (XL) LOADER VECTOR
 0441 ZHIUSE = $02CD 717 (XL) LOADER VECTOR
 0442 GBYTEA = $02CF 719 (XL) LOADER VECTOR
 0443 LOADAD = $02D1 721 (XL) LOADER VECTOR
 0444 ZLOADA = $02D3 723 (XL) LOADER VECTOR
 0445 DSCTLN = $02D5 725 (XL) DISK SECTOR SIZ
 0446 ACMISR = $02D7 727 (XL) RESERVED
 0447 KRPDER = $02D9 729 (XL) KEY AUTO REPEAT DELAY
 0448 KEYREP = $02DA 730 (XL) KEY AUTO REPEAT RATE
 0449 NOCLIK = $02DB 731 (XL) KEY CLICK DISABLE
 0450 HELPFG = $02DC 732 (XL) HELP KEY FLAG
 0451 DMASAV = $02DD 733 (XL) SDMCTL (DMA) SAVE
 0452 PBPNT = $02DE 734 (XL) PRINTER BUFFER POINTER
 0453 PBUFSZ = $02DF 735 (XL) PRINTER BUFFER SIZE
 0454 GLBABS = $02E0 736 GLOBAL VARIABLES, 4 SPARE BYTES
 0455 RAMSIZ = $02E4 740 PERMANENT START OF ROM POINTER
 0456 MEMTOP = $02E5 741 END OF FREE RAM
 0457 MEMLO = $02E7 743
 0458 ; $02E9 745 (800) SPARE
 0459 HNDLOD = $02E9 745 (XL) HANDLER LOADER FLAG
 0460 DVSTAT = $02EA 746 DEVICE STATUS BUFFER, 4 BYTES
 0461 CBAUDL = $02EE 750 CASSETTE BAUD RATE, 2 BYTES
 0462 CRSINH = $02F0 752 1 = INHIBIT CURSOR
 0463 KEYDEL = $02F1 753 KEY DELAY AND RATE
 0464 CH1 = $02F2 754
 0465 CHACT = $02F3 755
 0466 CHBAS = $02F4 756 CHARACTER SET POINTER
 0467 NEWROW = $02F5 757 (XL) DRAW DESTINATION
 0468 NEWCOL = $02F6 758 (XL) DRAW DESTINATION
 0469 ROWINC = $02F8 760 (XL)
 0470 COLINC = $02F9 761 (XL)
 0471 CHAR = $02FA 762
 0472 ATACHR = $02FB 763 ATASCII CHARACTER FOR CIO
 0473 CH = $02FC 764
 0474 FILDAT = $02FC 764 COLOR FOR SCREEN FILL
 0475 DSPFLG = $02FE 766 DISPLAY CONTROL CHARACTERS FLAG
 0476 SSFLAG = $02FF 767 DISPLAY START/STOP FLAFG
 0477 ;
 0478 ;
 0479 ; PAGE 3
 0480 ;
 0481 ;
 0482 ; RESIDENT DISK HANDLER/SIO INTERFACE
 0483 ;
 0484 DCB = $0300 768 DEVICE CONTROL BLOCK
 0485 DDEVIC = $0300 768
 0486 DUNIT = $0301 769
 0487 DCOMND = $0302 770

 0488 DSTATS = $0303 771
 0489 DBUFLO = $0304 772
 0490 DBUFHI = $0305 773
 0491 DTIMLO = $0306 774
 0492 DBYTLO = $0308 776
 0493 DBYTHI = $0309 777
 0494 DAUX1 = $030A 778
 0495 DAUX2 = $030B 779
 0496 TIMER1 = $030C 780 INITIAL TIMER VALUE
 0497 ADDCOR = $030E 782 (800) ADDITION CORRECTION
 0498 JMPERS = $030E 782 (XL) OPTION JUMPERS
 0499 CASFLG = $030F 783 CASSETTE MODE WHEN SET
 0500 TIMER2 = $0310 784 FINAL VALUE, TIMERS 1 & 2 DETERMINE BAUD
 RATE
 0501 TEMP1 = $0312 786
 0502 TEMP2 = $0313 787 (XL)
 0503 TEMP2 = $0314 788 (800)
 0504 PTIMOT = $0314 788 (XL) PRINTER TIME OUT
 0505 TEMP3 = $0315 789
 0506 SAVIO = $0316 790 SAVE SERIAL IN DATA PORT
 0507 TIMFLG = $0317 791 TIME OUT FLAG FOR BAUD RATE CORRECTION
 0508 STACKP = $0318 792 SIO STACK POINTER SAVE
 0509 TSTAT = $0319 793 TEMPORARY STATUS HOLDER
 0510 HATABS = $031A 794 HANDLER ADDRESS TABLE, 38 BYTES
 0511 MAXDEV = $0321 801 MAXIMUM HANDLER ADDRESS INDEX
 0512 PUPBT1 = $033D 829 (XL) POWER-UP/RESET
 0513 PUPBT2 = $033E 830 (XL) POWER-UP/RESET
 0514 PUPBT3 = $033F 831 (XL) POWER-UP/RESET
 0515 ;
 0516 ;IOCB's
 0517 ;
 0518 IOCB = $0340 832
 0519 ICHID = $0340 832
 0520 ICDNO = $0341 833
 0521 ICCOM = $0342 834
 0522 ICSTA = $0343 835
 0523 ICBAL = $0344 836
 0524 ICBAH = $0345 837
 0525 ICPTL = $0346 838
 0526 ICPTH = $0347 839
 0527 ICBLL = $0348 840
 0528 ICBLH = $0349 841
 0529 ICAX1 = $034A 842
 0530 ICAX2 = $034B 843
 0531 ICAX3 = $034C 844
 0532 ICAX4 = $034D 845
 0533 ICAX5 = $034E 846
 0534 ICAX6 = $034F 847
 0535 ; OTHER IOCB's, 112 BYTES
 0536 PRNBUF = $03C0 960 PRINTER BUFFER, 40 BYTES
 0537 ; $03E8 1000 (800) 21 SPARE BYTES
 0538 SUPERF = $03E8 1000 (XL) SCREEN EDITOR
 0539 CKEY = $03E9 1001 (XL) START KEY FLAG
 0540 CASSBT = $03EA 1002 (XL) CASSETTE BOOT FLAG
 0541 CARTCK = $03EB 1003 (XL) CARTRIDGE CHECKSUM
 0542 ACMVAR = $03ED 1005 (XL) RESERVED, 6 BYTES
 0543 MINTLK = $03F9 1017 (XL) RESERVED

 0544 GINTLK = $03FA 1018 (XL) CARTRIDGE INTERLOCK
 0545 CHLINK = $03FB 1019 (XL) HANDLER CHAIN, 2 BYTES
 0546 CASBUF = $03FD 1021 CASSETTE BUFFER, 131 BYTES TO $047F
 0547 ;
 0548 ;
 0549 ; PAGE 4
 0550 ;
 0551 ;
 0552 USAREA = $0480 1152 128 SPARE BYTES
 0553 ;
 0554 ; SEE APPENDIX C FOR PAGES 4 AND 5 USAGE
 0555 ;
 0556 ;
 0557 ;
 0558 ;
 0559 ; PAGE 5
 0560 ;
 0561 PAGE5 = $0500 1280 127 FREE BYTES
 0562 ; $057E 1406 129 FREE BYTES IF FLOATING POINT ROUTINES
 NOT USED
 0563 ;
 0564 ;FLOATING POINT NON-ZERO PAGE RAM, NEEDED ONLY IF FP IS USED
 0565 ;
 0566 LBPR1 = $057E 1406 LBUFF PREFIX 1
 0567 LBPR2 = $05FE 1534 LBUFF PREFIX 2
 0568 LBUFF = $0580 1408 LINE BUFFER
 0569 PLYARG = $05E0 1504 POLYNOMIAL ARGUMENTS
 0570 FPSCR = $05E6 1510 PLYARG+FPREC
 0571 FPSCR1 = $05EC 1516 FPSCR+FPREC
 0572 FSCR = $05E6 1510 =FPSCR
 0573 FSCR1 = $05EC 1516 =FPSCR1
 0574 LBFEND = $05FF 1535 END OF LBUFF
 0575 ;
 0576 ;
 0577 ; PAGE 6
 0578 ;
 0579 ;
 0580 PAGE6 = $0600 1536 256 FREE BYTES
 0581 ;
 0582 ;
 0583 ; PAGE 7
 0584 ;
 0585 ;
 0586 BOOTRG = $0700 1792 PROGRAM AREA
 0587 ;
 0588 ;
 0589 ; UPPER ADDRESSES
 0590 ;
 0591 ;
 0592 RITCAR = $8000 32768 RAM IF NO CARTRIDGE
 0593 LFTCAR = $A000 40960 RAM IF NO CARTRIDGE
 0594 C0PAGE = $C000 49152 (800) EMPTY, 4K BYTES
 0595 C0PAGE = $C000 49152 (XL) 2K FREE RAM IF NO CARTRIDGE
 0596 ; $C800 51200 (XL) START OF OS ROM
 0597 CHORG2 = $CC00 52224 (XL) INTERNATIONAL CHARACTER SET
 0598 ;

 0599 ;
 0600 ; HARDWARE REGISTERS
 0601 ;
 0602 ;
 0603 ; SEE REGISTER LIST FOR MORE INFORMATION
 0604 ;
 0605 ;
 0606 HPOSP0 = $D000 53248
 0607 M0PF = $D000 53248
 0608 SIZEP0 = $D008 53256
 0609 M0PL = $D008 53256
 0610 SIZEM = $D00C 53260
 0611 GRAFP0 = $D00D 53261
 0612 GRAFM = $D011 53265
 0613 COLPM0 = $D012 53266
 0614 COLPF0 = $D016 53270
 0615 PRIOR = $D01B 53275
 0616 GTIAR = $D01B 53275
 0617 VDELAY = $D01C 53276
 0618 GRACTL = $D01D 53277
 0619 HITCLR = $D01E 53278
 0620 CONSOL = $D01F 53279
 0621 AUDF1 = $D200 53760
 0622 AUDC1 = $D201 53761
 0623 AUDCTL = $D208 53768
 0624 RANDOM = $D20A 53770
 0625 IRQEN = $D20E 53774
 0626 SKCTL = $D20F 53775
 0627 PORTA = $D300 54016
 0628 PORTB = $D301 54017
 0629 PACTL = $D302 54018
 0630 PBCTL = $D303 54019
 0631 DMACLT = $D400 54272
 0632 DLISTL = $D402 54274
 0633 HSCROL = $D404 54276
 0634 VSCROL = $D405 54277
 0635 CHBASE = $D409 54281
 0636 WSYNC = $D40A 54282
 0637 VCOUNT = $D40B 54283
 0638 NMIEN = $D40E 54286
 0639 ;
 0640 ; FLOATING POINT MATH ROUTINES
 0641 ;
 0642 AFP = $D800 55296
 0643 FASC = $D8E6 55526
 0644 IFP = $D9AA 55722
 0645 FPI = $D9D2 55762
 0646 ZFR0 = $DA44 55876
 0647 ZF1 = $DA46 55878
 0648 FSUB = $DA60 55904
 0649 FADD = $DA66 55910
 0650 FMUL = $DADB 56027
 0651 FDIV = $DB28 56104
 0652 PLYEVL = $DD40 56640
 0653 FLD0R = $DD89 56713
 0654 FLD0P = $DD8D 56717
 0655 FLD1R = $DD98 56728

 0656 FLD1P = $DD9C 56732
 0657 FSTOR = $DDA7 56743
 0658 FSTOP = $DDAB 56747
 0659 FMOVE = $DDB6 56758
 0660 EXP = $DDC0 56768
 0661 EXP10 = $DDCC 56780
 0662 LOG = $DECD 57037
 0663 LOG10 = $DED1 57041
 0664 ;
 0665 ;
 0666 ; OPERATING SYSTEM
 0667 ;
 0668 ;
 0669 ; MODULE ORIGIN TABLE
 0670 ;
 0671 CHORG = $E000 57344 CHARACTER SET, 1K
 0672 VECTBL = $E400 58368 VECTOR TABLE
 0673 VCTABL = $E480 58496 RAM VECTOR INITIAL VALUE TABLE
 0674 CIOORG = $E4A6 58534 CIO HANDLER
 0675 INTORG = $E6D5 59093 INTERRUPT HANDLER
 0676 SIOORG = $E944 59716 SIO DRIVER
 0677 DSKORT = $EDEA 60906 DISK HANDLER
 0678 PRNORG = $EE78 61048 PRINTER HANDLER
 0679 CASORG = $EE78 61048 CASSETTE HANDLER
 0680 MONORG = $F0E3 61667 MONITOR/POWER UP MODULE
 0681 KBDORG = $F3E4 62436 KEYBOARD/DISPLAY HANDLER
 0682 ;
 0683 ;
 0684 ; VECTOR TABLE, CONTAINS ADDRESSES OF CIO ROUTINES IN THE
 0685 ; FOLLOWING ORDER. THE ADDRESSES IN THE TABLE ARE TRUE ADDRESSES-1
 0686 ;
 0687 ; ADDRESS + 0 OPEN
 0688 ; + 2 CLOSE
 0689 ; + 4 GET
 0690 ; + 6 PUT
 0691 ; + 8 STATUS
 0692 ; + A SPECIAL
 0693 ; + C JMP TO INITIALIZATION
 0694 ; + F NOT USED
 0695 ;
 0696 ;
 0697 EDITRV = $E400 58368 EDITOR
 0698 SCRENV = $E410 58384 SCREEN
 0699 KEYBDV = $E420 58400 KEYBOARD
 0700 PRINTV = $E430 58416 PRINTER
 0701 CASETV = $E440 58432 CASSETTE
 0702 ;
 0703 ; ROM VECTORS
 0704 ;
 0705 DSKINV = $E453 58451
 0706 CIOV = $E456 58454
 0707 SIOV = $E459 58457
 0708 SYSVBV = $E45F 58463
 0709 VBIVAL = $E460 58464 ADR AT VVBLKI
 0710 XITVBV = $E462 58466 EXIT VBI
 0711 VBIXVL = $E463 58467 ADR AT VVBLKD
 0712 BLKBDV = $E471 58481 MEMO PAD MODE

 0713 WARMSV = $E474 58484
 0714 COLDSV = $E477 58487

 APPENDIX C

 MEMORY USE

 Page 0

 $00-$7F

 Operating system zero-page. The entire first half of page zero is
 reserved for the operating system.

 $80-$FF

 Free zero-page. The top half of page zero is free if BASIC is
 disabled. BASIC uses all but $CB-$D1. The floating point math
 routines use $D4-$FF. If the floating point arithmetic package is not
 used this memory is free.

 Page 1

 $100-1FF

 This is the 6502 stack. The stack pointer initialized to $1FF and
 moves downward as the stack is filled.

 Pages 2-5

 $200-$47F

 This area is used for operating system database variables. Parts
 which are not used in some particular programs, such as the cassette
 buffer or printer buffer, may then be used for other purposes. See
 the O.S. equate listing for these locations.

 $480-$57D ($480-$6FF if no floating point)

 This is called the user work space. It is free to be used by
 programs. If the floating point arithmetic package is not used the
 user work space extends to $6FF. This area is used by BASIC.

 $57E-$5FF

 This area is used by the floating point arithmetic package. It is
 free if the package is not used.

 Page 6

 $600-6FF

 Atari has solemnly sworn never to put anything in this page of
 memory.

 Page 7-the screen region

 $700

 This is called the boot region. Most machine language programs which
 don't use DOS load at this address. DOS extends from $700-$1CFB.

 MEMLO

 The address pointed to by the O.S. database variable MEMLO [$02E7,2
 (743)] is the first byte of free memory. This pointer is usually
 changed by any program's initialization routine. For example, upon
 power-up, MEMLO points to $700. When DOS loads in, DOS changes MEMLO
 to point to $2A80. If an AUTORUN.SYS program then loads in just above
 DOS, such as DISKIO, it will usually change MEMLO to point above
 itself. One important reason for this is to protect the program from
 BASIC. BASIC uses memory starting at MEMLO.

 MEMTOP

 MEMTOP [$2E5,2 (741)] is set by the O.S. whenever a graphics mode is
 entered. The graphics region is at the very top of ram and extends
 downward. The address MEMTOP points to depends on how much memory the
 screen region uses.

 APPMHI

 APPMHI [$0E,2 (14)] should be set by any program to point to the
 highest address required by the program. If the O.S. cannot set up a
 screen without going below APPMHI it will return a
 not-enough-memory-for-screen-mode error.

 The cartridge slots

 $8000 (32768)

 This is the beginning of the 8K bytes used by the right cartridge slot
 of the 800. This is also where 16K cartridges begin. If there is no
 cartridge here it is ram.

 $A000 (40960)

 This is the beginning of the left cartridge of the 800 or the only
 cartridge slot on all other models. This is where the BASIC ROM
 resides in the XL/XE models. This area is RAM is there is no
 cartridge or BASIC is disabled on XL/XE models.

 above the cartridges

 $C000-$CFFF (49152-53247)

 This area is empty on the 800. Sometimes special ROM chips, such as
 Omnimon are wired in here. On the XL/XE models $C000-C7FF is free ram
 if there are no cartridges. On XL/XE models, the O.S. ROM starts at
 $C800

 $D000-$D7FF (53248-57373)

 This area is taken up by the hardware chips. The chips actually take
 only a fraction of this space. If these addresses are further decoded
 there is space for many, many more hardware chips. For example, The
 PIA chip uses 256 bytes of memory but needs only 4 bytes. There is
 room for 64 PIA chips in this reserved memory.

 $E000-E3FF (57344-58367)

 This is the location of the ATASCII character set.

 $E400-FFF7 (58368-65527)

 This is the operating system ROM

 $FFF8-$FFFF (65528-65535)

 These last 8 bytes contain the addresses of the interrupt vectors.
 Upon power up the 6502 gets a reset pulse and looks up the reset
 routine here.

	Atari System Reference manual - 01
	Atari System Reference manual - 02
	Chapter 01 - CIO - 01
	Chapter 01 - CIO - 02
	Chapter 01 - CIO - 03
	Chapter 01 - CIO - 04
	Chapter 01 - CIO - 05
	Chapter 01 - CIO - 06
	Chapter 01 - CIO - 07
	Chapter 01 - CIO - 08
	Chapter 01 - CIO - 09
	Chapter 01 - CIO - 10
	Chapter 02 - DOS - 01
	Chapter 02 - DOS - 02
	Chapter 02 - DOS - 03
	Chapter 02 - DOS - 04
	Chapter 02 - DOS - 05
	Chapter 02 - DOS - 06
	Chapter 02 - DOS - 07
	Chapter 03 - DUP - 01
	Chapter 03 - DUP - 02
	Chapter 03 - DUP - 03
	Chapter 03 - DUP - 04
	Chapter 03 - DUP - 05
	Chapter 03 - DUP - 06
	Chapter 04 - CASSETTE - 01
	Chapter 04 - CASSETTE - 02
	Chapter 05 - KEYBOARD - 01
	Chapter 05 - KEYBOARD - 02
	Chapter 05 - KEYBOARD - 03
	Chapter 06 - PRINTER - 01
	Chapter 07 - SCREEN - 01
	Chapter 07 - SCREEN - 02
	Chapter 08 - DISPLAY - 01
	Chapter 08 - DISPLAY - 02
	Chapter 08 - DISPLAY - 03
	Chapter 08 - DISPLAY - 04
	Chapter 08 - DISPLAY - 05
	Chapter 08 - DISPLAY - 06
	Chapter 08 - DISPLAY - 07
	Chapter 08 - DISPLAY - 08
	Chapter 08 - DISPLAY - 09
	Chapter 08 - DISPLAY - 10
	Chapter 08 - DISPLAY - 11
	Chapter 08 - DISPLAY - 12
	Chapter 08 - DISPLAY - 13
	Chapter 09 - DISK - 01
	Chapter 09 - DISK - 02
	Chapter 09 - DISK - 03
	Chapter 09 - DISK - 04
	Chapter 10 - INTERRUPTS - 01
	Chapter 10 - INTERRUPTS - 02
	Chapter 10 - INTERRUPTS - 03
	Chapter 10 - INTERRUPTS - 04
	Chapter 10 - INTERRUPTS - 05
	Chapter 10 - INTERRUPTS - 06
	Chapter 10 - INTERRUPTS - 07
	Chapter 11 - FLOATING POINT - 01
	Chapter 11 - FLOATING POINT - 02
	Chapter 11 - FLOATING POINT - 03
	Chapter 11 - FLOATING POINT - 04
	Chapter 11 - FLOATING POINT - 05
	Chapter 11 - FLOATING POINT - 06
	Chapter 11 - FLOATING POINT - 07
	Chapter 12 - BOOT - 01
	Chapter 12 - BOOT - 02
	Chapter 12 - BOOT - 03
	Chapter 12 - BOOT - 04
	Chapter 13 - SIO - 01
	Chapter 13 - SIO - 02
	Chapter 13 - SIO - 03
	Chapter 13 - SIO - 04
	Chapter 13 - SIO - 05
	Chapter 14 - HARDWARE - 01
	Chapter 14 - HARDWARE - 02
	Chapter 15 - DISPLAY LIST - 01
	Chapter 15 - DISPLAY LIST - 02
	Chapter 15 - DISPLAY LIST - 03
	Chapter 15 - DISPLAY LIST - 04
	Chapter 15 - DISPLAY LIST - 05
	Chapter 15 - DISPLAY LIST - 06
	Chapter 15 - DISPLAY LIST - 07
	Chapter 15 - DISPLAY LIST - 08
	Chapter 16 - PLAYER/MISSILE - 01
	Chapter 16 - PLAYER/MISSILE - 02
	Chapter 16 - PLAYER/MISSILE - 03
	Chapter 16 - PLAYER/MISSILE - 04
	Chapter 16 - PLAYER/MISSILE - 05
	Chapter 16 - PLAYER/MISSILE - 06
	Chapter 16 - PLAYER/MISSILE - 07
	Chapter 16 - PLAYER/MISSILE - 08
	Chapter 17 - SOUND - 01
	Chapter 17 - SOUND - 02
	Chapter 17 - SOUND - 03
	Chapter 18 - JOYSTICK - 01
	Chapter 18 - JOYSTICK - 02
	Chapter 18 - JOYSTICK - 03
	Chapter 18 - JOYSTICK - 04
	Chapter 19 - MISC - 01
	Chapter 19 - MISC - 02
	Chapter 20 - XL/XE - 01
	Chapter 20 - XL/XE - 02
	Chapter 20 - XL/XE - 03
	Chapter 20 - XL/XE - 04
	Appendix A - HARDWARE - 01
	Appendix A - HARDWARE - 02
	Appendix A - HARDWARE - 03
	Appendix A - HARDWARE - 04
	Appendix A - HARDWARE - 05
	Appendix A - HARDWARE - 06
	Appendix A - HARDWARE - 07
	Appendix A - HARDWARE - 08
	Appendix A - HARDWARE - 09
	Appendix A - HARDWARE - 10
	Appendix A - HARDWARE - 11
	Appendix B - OS EQUATES - 01
	Appendix B - OS EQUATES - 02
	Appendix B - OS EQUATES - 03
	Appendix B - OS EQUATES - 05
	Appendix B - OS EQUATES - 06
	Appendix B - OS EQUATES - 07
	Appendix B - OS EQUATES - 08
	Appendix B - OS EQUATES - 09
	Appendix B - OS EQUATES - 10
	Appendix B - OS EQUATES - 11
	Appendix B - OS EQUATES - 12
	Appendix B - OS EQUATES - 13
	Appendix C - MEMORY - 01
	Appendix C - MEMORY - 02
	Appendix C - MEMORY - 03

